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Abstract

Cancer classification is widely regarded as the first and most important step in the development of
cancer diagnosis and treatment. For example, tumors which exhibit strikingly similar phenotypes may
share an insiginificant number biological markers and lead to drastically different clinical treatments.
This paper presents an approach to feature recognition and cancer classification while making use
of standard statistical procedures and machine learning algorithms. Results of preliminary statistical
analysis are convincingly effective at predicting significant features within the data set and provide a
route to feature discovery in the future. Statistical learning algorithms prove less effective at class
prediction while providing an excellent example of the bias-variance tradeoff within machine learning
and the care researchers must take to consider the makeup of a data set as it applies to training a
classifier and mirroring reality.

I. Introduction

Although cancer classification has improved over
the past 30 years, there has been no general ap-
proach for identifying new cancer classes (i.e., can-
cer discovery) or for assigning tumors to known
classes (i.e., class prediction). In this article an ap-
proach to cancer classification based on gene mon-
itoring by DNA microarrays is described and ap-
plied to human acute leukemias as a test case. Sta-
tistical analysis methods proved to have varying
capability of differentiating between acute myeloid
leukemia (AML) and acute lymphoblastic leukemia
(ALL) without any previous knowledge of the
classes. These results demonstrate the plausibil-
ity of cancer identification based solely on differen-

tial gene expression and suggests a general method
of cancer classification without any prior biological
knowledge.

This data set comes from a proof-of-concept
study published in 1999 from Golub, et al. The
research showed how new cases of cancer could
be classified by gene expression monitoring and
thereby provided a general approach for identifying
new cancer classes and assigning tumors to known
classes.

i. Background

In the past, cancer classification has been primar-
ily based on morphological appearance of the tu-
mor, however, this has serious limitations. Tumors
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which exhibit similar histopathological or physical
appearance can show immensely different responses
to similar clinical treatment, suggesting that the
tumors are markedly different at the molecular
level. Thus, it is not unreasonable to believe that
numerous classes of cancer exist but have yet to be
classified.

In this article, acute leukemia will be used as
a test case for developing a method of cancer clas-
sification. In particular, gene expression data from
monitoring DNA microarrays is utilized in two dis-
tinct ways. Firstly, the molecular data is used to
identify significantly differentially expressed genes
that contribute largely to determining the class of
cancer, whether it be ALL or AML. Secondly, a ma-
chine learning model is trained on the data with the
intention of cancer classification without any pre-
requisite knowledge of biology or genomics.

As it stands, the distinction between ALL and
AML is well established, although, no single test is
currently sufficient to cement a diagnosis. Rather,
current practice involves an expert’s interpretation
of the tumor’s morphology, among other character-
istics. While accurate, human error is invariably
introduced to some of these cases leading to im-
perfect classification. Herein is presented a more
systemic approach to ALL and AML classification.

ii. Methods
Standard statistical measures and tests were com-
puted and performed prior to processing the data
and building any predictors, all of which were
taken from sci-kit learn. Firstly, the signifi-
cance of each gene was determined in two ways.
One method was to measure the mutual informa-
tion between the expression data and the class la-
bel, defined in terms of the Kullback-Leibler diver-
gence:1

I(X, Y ) = D(pX,Y ||pXpY ) (1)

Above, X and Y are random variables representing
gene expression and class labels, respectively, and

1The Kullback-Leibler divergence is defined by

D(p||q) =
∑
all x

px ln

(
px
qx

)
for probability distributions p and q.

pX,Y is their joint distribution while pX and pY are
their respective probability distributions. Impor-
tantly, note that the mutual information between
two random variables is zero if they are indepen-
dent and that I grows monotonically as their de-
pendence increases.

The most informative genes appeared often as
significant determinants of class prediction. A his-
togram of mutual information for each gene is il-
lustrated in Figure 3.

Further preprocessing was done by performing
a Wilcoxon rank-sum test under the null hypothe-
sis that the gene expression data is identically dis-
tributed regardless of the class label. The rank of
the kth feature in the data set is determined by

rk(X) = 1 +
∑
j 6=k

δ(xj < xk) (2)

where δ is the Kronecker delta function and the
corresponding statistic is measured as

W (X) =
n∑

k=1

ykrk(X) (3)

for a rank rk and class label yk (note that the class
labels are assumed to be binary, either 0 or 1).

Initial statistical analysis was concluded with
principle component analysis (PCA), the process
by which the data set is compressed into a sequence
of vectors, each of which is the direction of a best fit
line for the data. Importantly, the ith vector in the
set of n is orthogonal to the other n−1 so that the
new basis is orthonormal and each direction is lin-
early uncorrelated. Moreover, PCA identifies those
features which contribute the greatest variance to
the set.

Although the set of vectors returned by PCA
is minimally related to the features present in the
initial data set, the new basis can still be used to
inform us about particular features within the data.
An illustration of this use can be found in Figure
1.

The effect of the principle components on data
analysis is best understood through an analogy. If
we considered, say, the two most statistically signif-
icant features in the sample based on the Wilcoxon
rank-sum test, we could train a classifier on solely
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Figure 1: Expression data of the MARCKSL1
gene plotted against that of the LTC4S gene. The
first two principle components of the data are
shown.

the expression data of these genes for each sam-
ple before validating and testing the model. This
method would be based on the assumption that
only those features which are most statistically sig-
nificant contribute to cancer classification while ig-
noring the majority of the other samples in the data
set. Figure 2 illustrates the effectiveness of some
machine learning algorithms on this approach of
using only two features, fumarylacetoacetate (gene
2019) and oncoprotein 18 (gene 1927), to classify
samples. The roughness of the classification illus-
trated in this figure is remedied when we remember
that classification was performed using only those
two genes, whereas in reality the models we train
are free to use many more statistically significant
features.

Upon completion of data preprocessing, sta-
tistical analysis was performed using different ma-
chine learning techniques, including, but not lim-
ited to, random forest and nearest neighbor clas-
sification, as well as quadratic discriminant analy-
sis. All methods proved capable of predicting the
the class label with fair accuracy, some better than
others. Ultimately, these models were combined to
yield a majority voting classifier.

II. Preliminary Analysis

Preliminary analysis of the data revealed the most
informative genes of the set which corresponded
to the most statistically significant genes from the
Wilcoxon test. A few of the most statistically sig-
nificant genes and their respective p-values are pre-
sented in Table 1. The majority of the genes in this
sample overlap with the set of the most informa-
tive genes, most notably the genes ZYX, FAH, and
CST3.

CST3 is interesting in an additional respect
because it appears to introduce the most variabil-
ity to the data set. Through principle component
analysis it is seen that Cystatin C, the protein en-
coded by CST3, directs the most variation within
the data set and therefore appears to be a large,
if not the largest, contributor to the class label.
Along with this facet of the gene within the data
set is its connection to bone disease and some can-
cers. In particular, Cystatin C has been strongly
associated with multiple myeloma and proven to
be a great diagnostic metric for myeloma. In this
way, CST3 may be a candidate for discovering new
treatments for different types of cancers or a po-
tential therapeutic target.

Gene p-value/106 Gene p-value/106

ZYX 1.755 CD33 4.504
CST3 2.412 LYN 5.252
LTC4S 3.859 FAH 5.252
ELA2 3.859 CHRNA7 5.252
CSTA 4.504 LEPR 5.252

Table 1: Most differentially expressed genes in the
sample.

The other two genes, ZYX and FAH, have also
been shown to contribute to carcinogenesis to vary-
ing degrees. The ZYX gene encodes Zyxin, a pro-
tein which has been shown to play a role cancer de-
velopment, as well as apoptosis and wound healing.
Moreover, some studies have revealed that ZYX
can act as either an oncogene or a tumor suppres-
sor, depending on the type of cancer. Potentially
more significant is the role of ZYX in the Hippo
pathway. Hippo signaling is an evolutionary path-
way that controls cell proliferation and stem cell
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Figure 2: Mutual information of the genes with the highest mutual information across the entire data
set.

self renewal. The role of ZYX, in conjunction with
another pair of genes, may lead to deactivation of
this pathway and cell proliferation. The FAH gene,
which encodes fumarylacetoacetate, has been asso-
ciated with liver cancer and general liver dysfunc-
tion.

III. Results

i. Random Forest Classification

A random forest classifier is a combination of de-
cision tree predictors which uses averaging and en-

semble voting to improve the predictive accuracy
over a single decision tree alone. In fact, forests
have been shown to be competitive with other clas-
sification algorithms, previously thought to have
outclassed this nonparametric model.

While proven effective at different types of
classification and regression, the random forest
is confounding insofar as trying to understand
its mechanism of prediction. In fields such as
medicine, the interaction of features within a
data set is critical to developing biological models
which describe observed outcomes. Hence, random
forests are suboptimal with regard to interpretabil-
ity. Nevertheless, here we concern ourselves with
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Figure 3: Mutual information of the genes with the highest mutual information across the entire data
set.

classification and leave interpretability for another
time.

Finding the optimal parameters for
the random forest was done by a grid
search using the built-in function within
sklearn.model_selection. Grid searching
allows us to fine tune hyperparameters of the
model to optimize predictive ability. This model
was trained and validated using leave-one-out
cross-validation.

The importance of each feature within the
random forest was calculated and the results are
reported in Figure 6. Unsurprisingly, the same
genes which were most statistically significant in
the Wilcoxon rank-sum test are most important
within classification. Evaluation of the model was
done by plotting an ROC curve and also building
a confusion matrix based on class predictions from
the random forest. The area under the ROC curve
for this classifier is 0.318.

The results of the random forest classifier on
this data are disheartening. Though, it provides
a nice illustration of the trade-off between bias
and variance within machine learning. The cross-
validation score of this model on the training set
is excellent, above 0.90. Though, clearly, the clas-
sifier does not do as great a job at predicting the
class labels of the testing set.
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Figure 4: ROC curve for random forest classifier
based on performance when modeling test set.

ii. Nearest Neighbor Classification

Nearest neighbor classification (or k-nearest neigh-
bor classification) is a machine learning method
which aims at labeling previously unseen sample
points by inheriting the class label of the sam-
ple point(s) nearest it. The decision rule for this
method combines labels of the k nearest sample
points, either by majority, plurality, or distance-
based voting.

Part of the novelty in nearest neighbor classi-
fication is that the it is a lazy evaluation model (in
contrast to eager evaluation models). Unlike para-
metric estimators which allocate time and memory
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Figure 5: Confusion matrix based on predictions
made by random forest classifier on testing set.

to build an appropriate model before classifying the
data, lazy evaluators derive their decision-making
ability from the training elements and therefore are
sometimes referred to as instance-based learners.

Similar to how the random forest classifier
was evaluated, the nearest neighbor model was
assessed initially using a confusion matrix and
an ROC curve. The area under the ROC curve
showed a slight improvement over the random for-
est, granted, it remained abysmally low at 0.371.
Unlike the random forest classifier, however, hyper-
parameters for the classifier were fine-tuned using
an iterative method to determine the best value of
k. Ultimately, k = 11 was chosen for the model
and a plot of performance as k varies can be found
in Figure 7.

The ROC curve for this model is illustrated
in Figure 9. Both this model and the random for-
est classifier suffered from a greater false positive
than true positive rate, indicating some potential
bias within the models. To attempt to remedy this,
the dimensionality of the training set was reduced
greatly, bringing the number of features used to
classify down from 7129 to just 38. In particu-
lar, the 38 most statistically significant based on
the Wilcoxon rank-sum test. Performing the same
analysis with the new training set afforded an ROC
curve with more promising results and is illustrated
in Figure 10.

a. Observed Error Rate of Nearest Neighbor Clas-
sifier

In the limit that the number of samples being
trained and tested on grows increasingly large, the
generalized error of the nearest neighbor classifier,
e(FNN), is shown to be

e∗ ≤ e(FNN) ≤ 2e∗ (4)

where e∗ is the error rate of the Bayes classifier.
In practice, these bounds imply that the nearest
neighbor classifier is often hard to improve upon.

The observed error rate of the nearest neighbor
classifier in this example, however, is exceedingly
large and warrants some inspection. The Bayes es-
timator is a theoretically optimal classifier, assum-
ing that the joint distributions of the features and
class labels is known, and is typically unknown in
practice. In particular, it minimizes the loss based
on the expected value of the posterior distribution
and the true class label. The reason for the ob-
served error rate in this case likely stems from the
fact that a large amount of features in the data set
are redundant and likely lead to overfitting. This
reason corroborates the effect of reducing the train-
ing set by considering only the most differentially
expressed features, as shown in the ROC curve of
Figure 10.

iii. Quadratic Discriminant Analysis
Quadratic discriminant analysis (QDA) is a gen-
erative machine learning model based on linear
discriminant analysis (LDA), with slightly less re-
laxed assumptions. Both LDA and QDA fall under
the category of Gaussian discriminant analysis, a
learning algorithm which attempts to fit a Gaus-
sian distribution to each class of the data set. LDA
results in a linear decision function because it as-
sumes class-independent variances, whereas QDA
results in a quadratic decision function because it
does not.

Although this learning method is typically
used only when the number of observations in a
sample is large enough, the classifiers we’ve dealt
with so far have suffered from suboptimal predic-
tive power so why not try something new?

The QDA classifier was initially tested using
both the training set and testing set containing
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Figure 6: Relative importances of most important genes within random forest classifier.

0 5 10 15 20 25
k 

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Ac
cu

ra
cy

Accuracy of k-Nearest Neighbor Classifier as Function of k

Figure 7: Plot of accuracy versus k for k-nearest
neighbor classifier. This was the method used to
determine the optimal value of k for the model.

all features of the set, yielding unfavorable results.
While increasingly promising, the results for the
model on the reduced training and testing sets still
suffers from large false positive and false negative
rates. An ROC curve of the latter, smaller training
set can be found in Figure 12.

The misclassifications of ALL cases as AML
cases is in contrast to the predictions made by the
nearest neighbor model which did a finer job of
predicting true class labels.
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Figure 8: Confusion matrix based on predictions
made by k nearest neighbor classifier on testing
set.

iv. Support Vector Machines

A support vector machine (SVM) is a supervised
learning algorithm which finds the hyperplane in
space with the largest margin between two classes
(in the case of binary classification). SVMs are
used widely in classification problems and can func-
tion as both linear and nonlinear classifiers, de-
pending on the data set. Here, a linear support
vector classifier (LSVC) is used to classify the data
as belonging to either the ALL or AML classes.

The advantages and disadvantages to SVMs
are well-recognized. Importantly, the advantages
of SVMs include begin effective in high-dimensional
spaces (such as our case, including over 7000 fea-
tures) and being memory efficient, since only a sub-
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Figure 9: ROC curve for k nearest neighbor
classifier based on performance when modeling
test set.
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Figure 10: ROC curve for k nearest neighbor
classifier based on performance when modeling
test set using the reduced training set.

set of the training set is used to create the de-
cision function (also known as the hyperplane in
this case). However, disadvantages of SVMs occur
when the number of features of the data set vastly
outnumbers the number of samples (again, such as
our case), leading to overfitting, as well as the fact
that SVMs do not directly provide probability es-
timates of the decided class. Although probability
estimates of the decision can be computed using
algorithms such as Platt scaling, these calculations
are expensive relative to the cost of building the
classifier to begin with.
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Figure 11: Confusion matrix based on predictions
made by QDA classifier on testing set.
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Figure 12: ROC curve for the QDA classifier
based on performance when modeling test set
using the reduced training set.

Figures 13 and 14 are confusion matrices eval-
uating the accuracy of an LSVC on the reduced
feature set for both the training and testing class
labels.

v. Ensemble Voting
The final technique employed to attempt to build
an effective classifier involved compiling all of the
models built so far into a voting classifier. The
principle behind a voting classifier is to combine
conceptually different classifiers and use a majority
vote to predict class labels. Such classifiers work for
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Figure 13: Confusion matrix based on predictions
made by LSVC classifier on training set using
reduced training set.
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Figure 14: Confusion matrix based on predictions
made by LSVC classifier on testing set using
reduced training set.

equally well-performing models and for balancing
models to minimize the weaknesses of individual
contributors. The approach presented here is to
try and address the latter.

A voting classifier was created using three of
the four models presented herein, including LSVC,
QDA, and the nearest neighbor classifier. The
choice of these three classifiers was based on the
performance of each model. Some relevant accu-
racy metrics for each of the four classifiers are il-
lustrated in Table 2. These particular models were
chosen in an attempt to avoid the weaknesses of
each classifier and bolster the strengths because
each showed poor performance in different respects.

Classifier F1-score AUC Accuracy
Random Forest 0.519 0.482 0.529
Nearest Neighbor 0.676 0.371 0.500
QDA 0.414 0.421 0.489
LSVC 0.500 0.500 0.575

Table 2: Results for selected scoring metrics of
classifiers used. The “Accuracy” column is a
measure of the balanced accuracy.

Interestingly, the performance of the ensemble
classifier based on the confusion matrix in Figure
15 is identical to that of the LSVC classifier alone.
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Figure 15: Confusion matrix based on predictions
made by voting classifier on testing set using
reduced training set.

IV. Discussion

Statistical analysis and machine learning algo-
rithms have proven capable to some degree of bi-
nary class prediction. The distinction between
ALL and AML was shown to vary with only a small
subset of the features within the data, and by re-
ducing the number of features, class prediction only
grew more accurate. The most striking feature of
the outcomes of these classifiers, however, is the
large bias imparted into each model in spite of ef-
forts to reduce it.
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i. The Bias-Variance Tradeoff

No matter the particular machine learning algo-
rithm, the goal of classification and regression is to
maximize the accuracy of a model while minimiz-
ing the loss. The accuracy of a model can therefore
be measured by the total error, in particular the
mean-square error (MSE), determined as

MSE = B2 + V (5)

for a bias B and variance V . Hence, maximizing
the accuracy of a model equates to minimizing the
bias and variance.

Within each classifier studied earlier, perfor-
mance on the training set was excellent, with each
algorithm scoring well during cross-validation and
earning high balanced accuracy scores. However,
this performance dropped significantly on the test-
ing set, suggesting a strong bias present within the
training data.

Analyzing the samples used in the training set
reveals the source of this bias as imbalanced data.
The number of patients with ALL and AML in the
training set was 27 and 11, respectively, and in the
testing set the number of occurrences of each was 20
and 14, respectively. In both cases, the amount of
ALL cases outnumbers the amount of AML cases,
though, the ratio of cases is disproportionate across
sets. Training on imbalanced data has generated
two competing schools of thought regarding ma-
chine learning. Some argue that training on imbal-
anced data biases a classifier towards the majority
class, exactly what is observed herein. Others ar-
gue that rebalancing sample selection affords an
inaccurate view of reality and that imperfect train-
ing data is essential for real-world applications of
machine learning to medicine.

The latter of these arguments is particularly
applicable to cancer classification and prediction
where proponents for the school of thought believe
that bias inherent within the data is a characteris-
tic component of the overall population. Especially
within cancer prediction, false positives may be fa-
vorable over false negatives because the former is a
more conservative prediction and less likely to lead
to complications in the future.

ii. Biological Relevance
The biological relevance of the statistically signif-
icant genes is discussed briefly earlier, and com-
mented on here as well. The most statistically sig-
nificant genes in the sample are those which have
been connected to carcinogenesis in previous stud-
ies and connected with important biological path-
ways related to cell proliferation.

Most importantly, it should be noted that
learning and prediction from the model was done
with no prior biological background. The signifi-
cance of genes in certain pathways bore no impact
on the statistical significance of the feature and did
not impart any bias toward the impact that feature
would have on classification. Thus, the outcomes
presented here illustrate a method of prediction
based purely on data. Hence, it is not unreasonable
to believe that building a classification model with
prior biological knowledge may bolster predictive
power and create a stronger classification scheme.

Moreover, a classification model of the kind
may function as a method of discovery for cancer-
related genes in the future. Many features deter-
mined to be significant and informative based on
only some of the classification models reviewed here
have not been linked with leukemia, let alone differ-
ent cancer types to begin with. In conjunction with
the observation that the most highly correlated fea-
tures of the sample, such as ZYX and CST3, have
been shown to either directly or indirectly affect
cancer development and tumorigenesis, future di-
rections for this research may invariably include
testing the effect that suppression of other highly
correlated genes (which have not previously been
focused on) have on cancer development.

V. Conclusion

The primary result of the statistical analysis and
machine learning research done within this article
is represented by numerous takeaways. Firstly, and
most importantly, is the importance of inherent
bias within a data set and how it plays out within
classification.

The bias-variance tradeoff has been already la-
boriously discussed and its consequences to predic-
tive power of different types of machine learning
algorithms has been analyzed. Recognizing the
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inherent bias within a training set is important
when evaluating the predictive power of an esti-
mator, however, altering this bias may not always
be the optimal route to fast track real world ap-
plications. The advent of machine learning applied
to medicine is promising, and while training classi-
fiers on randomized data typically leads to unbiased
algorithms, the bias inherent within a population
is often a key characteristic of that data set. On
the other hand, training a classifier on biased data
oftentimes leads to a biased predictor, decreasing
the variance of the model and weakening predic-
tive power. This tradeoff is the primary reason
machine learning applications to medicine are not
as omnipresent as computational biologists might
desire. The expertise of a specialized physician will
always outclass a computer.

The other major takeaway of this project is the
power of machine learning algorithms to discover
new, biologically relevant features which signifi-
cantly contribute to carcinogenesis, among other
interests. Current research is motivated by previ-
ous studies on the effects of certain features, which
is motivated by previous studies on the effects of
certain features, and so on. Here, a method of de-
tecting significant contributors to leukemia is only
a preliminary to further statistical analysis, sug-
gesting that applying a greater focus on gene ex-
pression data within patients with leukemia may
lead to the discovery of features that were previ-
ously uncorrelated with leukemia. This hypothesis
has already been shown to hold water for genes
such as ZYX, which plays a role in breast cancer,
lung cancer, and certain melanomas.

Within the context of the results presented
here, machine learning algorithms appear to be in-
effective at cancer classification and one may ar-
gue that the applications of statistical learning to
medicine should be restricted to statistical analy-
sis. This conclusion, however, is far removed from
the particulars of machine learning and the signifi-
cance that data plays in statistical analysis. While
the eager student may remain ignorant to the con-
sequences of the bias-variance tradeoff and standby
standard practices of analysis in medicine (citing
ineffective predictive power from certain machine
learning algorithms), the results of this study offer
a critical insight into how statistical learning must
be implemented into medicine and why it is nec-

essary to continue to develop methods which have
potential to change the way cancer research is per-
formed.
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