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FOREWORD

My goal here was to recreate everything a student needs to know for the physical chemistry sequence, from

the perspective of a student currently learning it. Oftentimes there are topics Dr. Fried and/or Dr. Bowen

take for granted cause they’ve been studying this stuff for years that went completely over my head during

lecture and so understanding those things took a bit of extra thought. All of that extra thought I’ve transcribed

here, in an effort to provide equally, if not more detailed explanations for the plethora of topics covered by

thermodynamics, kinetics, and quantum mechanics.

I take no credit for any of the writing here. All of it was taken from the lectures of either class, the

accompanying textbooks for the courses, or other interesting books I’ve read. Although I didn’t cite any

sources within the text, I provided references at the end. In addition to the fact that I’m not taking credit for

anything, I think I’m good as far as plagiarism goes. Also I just learned that technically the University owns

all of the classes/lecture material(?) so I guess I’m just gonna hope that the University doesn’t sue me.

- Sam
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Part I

Thermodynamics and Kinetics
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CHAPTER

1

THE LAWS OF THERMODYNAMICS

A theory is more impressive the greater the simplicity of its premises is, the more different kinds

of things it relates, and the more extended its area of applicability. Therefore the deep impression

which classical thermodynamics made upon me. It is the only physical theory of universal content

concerning which I am convinced that, within the framework of the applicability of basic concepts, it

will never be overthrown.

—Albert Einstein

The laws of thermodynamics put restrictions on how thermodynamic variables change when a system and its

surroundings change. These restrictions include, but are not limited to, the flow of energy and the distribution of

temperature in a material. In chemical reactions, the first and second laws determine the equilibrium positions

of reactions.

Thermodynamics can be treated purely from a macroscopic point of view, treating its laws as being stated

in terms of macroscopic variables and measurable properties. This approach is usually referred to as classical

thermodynamics. Another approach is to derive the macroscopic behavior from a statistical treatment of the

atoms and molecules composing the system, called statistical thermodynamics.

1.1 The First Law

One popular description of the first law is simply, energy is conserved. That is, energy can neither be created

nor destroyed. For an isolated system, this result clearly holds. For more complicated processes, the internal

energy of a system may increase or decrease but held in the context of the overall change in energy of the

system and surroundings, the overall change in energy is zero. In other words, the change in energy of a system

is exactly equal to the opposite change in energy of the surroundings.

The first law is sometimes represented with a statement that energy of the system can be changed either

by heat or by work, and different combinations of heat and work can bring about a change of state1.

1In fact, it was Joule who discovered heat and work were both forms of energy. Prior to the early 1800’s, heat and work were
thought to be completely distinct ideas

3
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The statement of the first law in equation can be expressed elegantly, as

U = q + w (1.1.1)

with U representing the internal energy of the system, w the work done on the system, and q the heat absorbed

by the system. That is, w < 0 when the system does work. It’s also commonly expressed in its differential

form.

dU = dq + dw (1.1.2)

with dU as an exact differential whereas dq and dw are inexact differentials and dependent on the path. This

fact that heat and work are inexact differentials is immensely important. A system at equilibrium possesses

a uniquely determined amount of internal energy, but it makes no sense to talk about a system possessing a

unique amount of heat or a certain amount of work.

1.2 The Second Law

The second law of thermodynamics establishes the concept of entropy as a state function and applies its physical

properties to the direction of spontaneous change for a thermodynamic process. In particular, the second law

helps us determine the spontaneity of processes, in contrast to the first law which says nothing about the

direction of thermodynamically favorable change for a reaction. The importance of the second law cannot be

understated. In fact, Arthur Eddington, an English physicist and mathematician, wrote the following in 1927:

If someone points out to you that your pet theory of the universe is in disagreement with Maxwell’s

equations—then so much the worse for Maxwell’s equations. If it is found to be contradicted by

observation—well these experimentalists do bungle things sometimes. But if your theory is found

to be against the second law of thermodynamics I can give you no hope; there is nothing for it but

to collapse in deepest humiliation.

Analytically, the second law of thermodynamics can be expressed simply as

dS ≥ 0 (1.2.1)

where S is the entropy of the universe. More generally, the second law tells us that the entropy change for an

isolated system must be positive 2. Naturally, reversible processes neither increase nor decrease entropy. If one

direction decreased entropy, then that direction would violate the second law.

As we’ll come to see, the second law of thermodynamics puts a limit on the efficiency of engines that

accept heat energy and output work. As a rough example, consider a power plant which accepts energy in the

form of heat to be powered. In reality, only about 30% of the heat energy accepted by one of these plants is

used as work and therefore 70% of it must be rejected at a lower temperature. In practice, this heat is typically

absorbed by water and oftentimes taken from a natural source such as a river or lake. In this case, the resulting

increase in temperature of the water reservoir has significant effects on aquatic life and has come to be known

as “thermal pollution.”

1.2.1 The Numerous Restatements and Corollaries of the Second Law

We know that entropy is a state function and therefore the entropy change for a reversible process is the same

as the irreversible process with identical initial and final states. Thus,

∆S =

∫
dqrev
T

>

∫
dqirr
T

(1.2.2)

2We can think of the entire universe as an isolated system, which is why we can make the broad statement that the entropy of
the universe is always increasing
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since qrev is strictly greater than qirr. Then, we have that

∆S ≥
∫
dq

T
(1.2.3)

where the equality holds for a reversible transformation but is a strict inequality for an irreversible transfor-

mation. This is known as the Clausius Inequality.

The Clausius inequality is one example of a restatement of the second law. Here are a few more:

In sticking with the theme of the legend himself Rudolf Clausius, we turn to the Clausius and Kelvin

statements of the second law. These statements give the direction of spontaneous change for a transformation,

either through heat flow or through the work done by heat engines. Although seemingly unrelated at first,

these two statements imply one another. That is, if we can prove one the proof of the other is trivial. The

Clausius statement of the second law is

No process is possible where the sole result is transfer of heat from a body at lower temperature to

a body at higher temperature.

The Kelvin statement of the second law is

No process is possible where the sole result is absorption of heat from a reservoir and its complete

conversion to work.

An important corollary to these statements is the following:

Systems can spontaneously undergo processes that decrease entropy, but this must be counteracted

by an increase in entropy of the surroundings.

That is, it is certainly possible for systems to spontaneously become more ordered, but only when the sur-

roundings become less ordered to an equal or greater extent. An alternative (and potentially more useful way

of phrasing this result) is that

Any spontaneous (irreversible) process that occurs in isolation must be associated with increasing

entropy.

In order to understand the Kelvin statement of the second law of thermodynamics (and therefore also

the Clausius statement) and develop a connection to entropy, we’ll need to understand heat engines and the

Carnot cycle, which are covered in Section 3.4.1.

Another (arguably even more convoluted) restatement of the second law is Planck’s statement of the

second law, put forth as follows:

It is impossible to devise a machine whose only effects are the removal of heat from a reservoir and

the performance of work.

Okay this the last restatement of the second law I promise: Caratheodory3 formulated the second law of

thermodynamics not based on physical quantities such as heat but instead through the axiomatic principle of

irreversibility in thermodynamics:

In the neighbourhood of any initial state, there are states which cannot be approached arbitrarily

close through changes of state.

In this statement he went on to coin the term adiabatic accessibility, the principle that two states X and Y

are said to be “adiabatically accessible” if X can be transformed to Y without the system suffering from the

transfer of energy as heat or matter4

3Constantin Caratheodory was a Greek mathematician who contributed to everything from complex analysis to thermodynamics.
To quote some old German book about him, “He was remembered by his colleagues as a respectable and cultured man’.’

4Obviously the principle is more technical than this but it’s way beyond anything that we would ever need to know for this
class.



6 CHAPTER 1. THE LAWS OF THERMODYNAMICS

1.2.2 Schrödinger’s “Paradox”

According to the second law, all isolated systems are expected to reach a system of maximum disorder after

a long enough time has passed. Since life approaches and maintains a highly ordered state some argue that

this seems to violate the aforementioned law, implying a paradox. Schrödinger, however, pointed out that the

biosphere is not an isolated system and that there is an increase in entropy in the surroundings as a result of

the loss of heat to an organism’s environment. By this mechanism, the second law is obeyed and life maintains

a highly ordered state which is sustained by an increase in disorder of the universe.

In order to increase order on earth, as life does, organisms harness the free energy provided by the sun.

1.3 The Third Law

The third law of thermodynamics concerns itself with the convergence of the entropy of a system. In particular,

the behavior of substances at absolute zero, or zero Kelvin. In words, the third law can be written as

The entropy of a system is zero at absolute zero.

Pretty simple. Microscopically, this result agrees with our intuition about entropy. Consider the Boltzmann

equation, S = kB lnW where W is the number of microstates for a system. For a system at absolute zero, by

definition there is no kinetic energy among atoms or molecules and therefore no movement. Then, the number

of microstates reduces to one and entropy reduces to zero.

Interestingly, there exists a formulation of the third law which approaches the subject by postulating the

behavior of energy:

If the composition of two thermodynamic systems constitutes an isolated system, then any energy

exchange between the two systems is bounded.

Sometimes the third law is referred to as Nernst’s Thereom because he was the first person to postulate

a result like this. If we wanted to be as general as possible about the third law, assuming nothing about the

behavior of atoms and molecules at absolute zero, then we could write alternatively that at absolute zero the

entropy of a system is a well-defined constant and is determined by the degeneracy of the ground state of the

system.

After the development of statistical mechanics, the third law of thermodynamics went from being a fun-

damental law to a derived law, as the result that substances at absolute zero have zero entropy is a consequence

of the Boltzmann equation.



CHAPTER

2

STATE FUNCTIONS AND THEIR STATE

VARIABLES

In science we must all submit not to what seems to us attractive from one point of view or another,

but to what represents an agreement between theory and experiment.

—Dmitri Mendeleev

State functions are path independent functions, meaning that their values can be defined for a specific set

of conditions. Examples of some common thermodynamic state functions include the internal energy U and

the enthalpy H. An important property of state functions is that they enjoy the equality of mixed partial

derivatives. This property will be of great use when we derive the Maxwell relations.

The state variables of a state function are those which are necessary to completely describe the value of

a state function. Typically, the variables which we’ll be interested in are temperature, pressure, and volume.

For reactions containing more than one chemical species, we are often interested in the molar quantity,

denoted X̃, and partial quantity, denoted Xi of a particular species. The molar quantity is the amount of a

particular extensize thermodynamic quantity contributed per mole, and the partial quantity is the amount of

a particular thermodynamic quantity contributed by one substance. Using these definitions, we can define a

partial molar quantity as X̃i which represents the amount of a particular thermodynamic quantity contributed

per mole by one substance in a mixture.

2.1 Internal Energy

The internal energy of a system is conserved, forming the basis of the first law of thermodynamics. It is

characterized by the heat absorbed and the work done on a system. Mathematically, it can be expressed as

U ≡ q + w (2.1.1)

We could also get more technical with our expression for the internal energy and write it in a differential

form,

dU = dq + dw (2.1.2)

7



8 CHAPTER 2. STATE FUNCTIONS AND THEIR STATE VARIABLES

or an integrated form

∆U =

∫
dq +

∫
dw (2.1.3)

Although the internal energy is the sum of two path dependent quantities (heat and work), by itself it is

a state function meaning that ∆U along a closed curve (i.e., the initial and final states are the same) is equal

to zero.

The natural variables of internal energy are V and S. This implies that at a constant volume and entropy,

the internal energy of a system is an indicator of spontaneity.

This relationship can be shown using the differential form of the First Law:

dU = dq + dw

≤ TdS − PdV (2.1.4)

=

(
∂U

∂S

)

V

dS +

(
∂U

∂V

)

S

dV

Note that we’ll use an equality and assume that this transformation is reversible. Here, we’ll take a moment

to gaze at Equation (2.1.4). Considering the inequality, dU acts as a useful potential when dS and dV are

zero, that is, when S and V are fixed. When this happens, the direction of spontaneous change is the one

which decreases internal energy (this direction is the one consistent with the Second Law of Thermodynamics).

Moreover, when dU = 0 the system has reached equilibrium.

Here would be a good time to point out the contrast between determining spontaneity in thermodynamic

systems and simple mechanical systems. Why is it that when we talk about spontaneity in thermodynamic

systems we use Gibbs free energy but when we talk about spontaneity for mechanical systems we can get away

with talking about just the energy?

For simple mechanical systems, we are typically interested in situations involving only a few objects: A

ball rolling down a hill, an object rotating about an axis, or a projectile being launched off a cliff, to name a few.

In these cases, the entropy of the system barely changes (if at all) and can therefore be treated as constant. In

a similar vein, the volume of these systems doesn’t change whatsoever. Then, as we’ve already posited, when

entropy and volume are constant then the internal energy of a system will be an indicator of spontaneity.

In contrast, for thermodynamic systems the entropy of a transformation is nearly impossible to hold

constant (still possible, just nearly impossible). For a chemical reaction, the expansion of a gas, the mixing of

two substances, the entropy is always changing. Moreover, the volume changes in many of these transformations

as well. Thus, we see that the internal energy of a substance is a very poor indicator of spontaneity for

thermodynamic systems because of its natural variables.

State functions acting as potentials under certain conditions will be a common theme as we analyze

different types of free energy. Alright, now we can return to our analysis of the internal energy:

In the last line after Equation (??) is the total partial differential of U and is there to (hopefully) clearly

illustrate the relationships (
∂U

∂S

)

V

= T &

(
∂U

∂V

)

S

= −P

Then, by the equality of mixed partial derivatives, we have

∂

∂V

(
∂U

∂S

)

V

=
∂

∂S

(
∂U

∂V

)

S(
∂T

∂V

)

S

= −
(
∂P

∂S

)

V

(2.1.5)

Which is one of the four Maxwell relations.
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2.2 Enthalpy

The enthalpy is defined as

H ≡ U + PV (2.2.1)

and was created just because we needed a state function with a differential equal dU + PdV at a constant

pressure. The enthalpy can be thought of as the internal energy plus the cost of pushing back the universe to

make a hole in which to place (or expand) the system. Enthalpy is useful for analyzing the thermodynamics of

systems at constant pressure. At a constant pressure, the total partial differential of H becomes

dH =

(
∂H

∂U

)

P,V

dU +

(
∂H

∂P

)

V,U

dU +

(
∂H

∂V

)

P,U

dV

= dU + PdV

and by the First Law of Thermodynamics we can say that (dH)P = (dq)P . Why did we go to all this trouble?

Recall that we define the heat capacity at a constant pressure as dq/T = Cp. Thus,

Cp =

(
∂H

∂T

)

P

(2.2.2)

I think I do this derivation somewhere else in these notes too.

We’ll quickly jump back to the total partial differential of the enthalpy, this time deriving it from how we

define H:

H = U + PV

dH = dU + d(PV )

= dq + dw + PdV + V dP

≤ TdS − PdV + PdV + V dP

≤ TdS + V dP (2.2.3)

=

(
∂H

∂S

)

P

dS +

(
∂H

∂P

)

S

dP

Equation (2.2.3) indicates that under conditions with constant entropy and pressure, enthalpy acts as an

indicator of spontaneity. In particular, if dH < 0 in these conditions, the transformation is spontaneous. Similar

to when we talked about internal energy, this is the direction which obeys the Second Law of Thermodynamics.

Moreover, if dH = 0 under these conditions we know that we’ve achieved equilibrium.

For now, however, we’ll substitute an equality and assume the transformation is reversible. Thus, we see

that the natural variables of enthalpy are P and S so that H(P, S). Notice that

(
∂H

∂S

)

P

= T &

(
∂H

∂P

)

S

= V

so that by the equality of mixed partial derivatives,

∂

∂P

(
∂H

∂S

)

P

=
∂

∂S

(
∂H

∂P

)

S(
∂T

∂P

)

S

=

(
∂V

∂S

)

P

(2.2.4)

which is one of the four Maxwell relations.
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2.3 Entropy

Entropy is a physical property of a system that corresponds to randomness, disorder, or uncertainty. Typically,

entropy is defined in the context of the second law of thermodynamics at the macroscopic level, but it can also

be viewed from the microscopic level using the Boltzmann equation. Macroscopically, we define the entropy as

dS ≡ dqrev
T

(2.3.1)

where dqrev is the heat absorbed by a system during a reversible transformation. Since entropy is a state

function, however, we can define it for both reversible and irreversible processes:

∆Srev = ∆Sirr =

∫
dqrev
T

(2.3.2)

Then, if asked to compute the entropy involved in an irreversible process, we can go about computing the

entropy for the reversible process which has identical initial and final states.

Here, recall the important result that the heat absorbed by a system for a reversible process is always

less than that for an irreversible process. That is, qrev > qirr. This implies that

∆Srev = ∆Sirr =
dqrev
T

>
dqirr
T

(2.3.3)

and we obtain the Clausius inequality, a restatement of the second law of thermodynamics:

∆S ≥
∫
dq

T
(2.3.4)

This expression is an equality for a reversible process and a strict inequality for a irreversible process.

The Clausius inequality has some major implications. For an adiabatic process (or an isolated system),

dq = 0 and therefore ∆S ≥ 0. This inequality forms the basis of the second law of thermodynamics. Since the

universe as a whole can be considered an isolated system we can make the broad claim that the entropy of the

universe never decreases.

A potentially more helpful way of phrasing this result is that any spontaneous (irreversible) process that

occurs in isolation must be associated with an increase in entropy. Naturally, reversible processes neither

increase nor decrease entropy. If one direction were to increase entropy the corresponding reverse reaction

would be associated with a decrease in entropy and would therefore violate the second law.

Another important corollary to these statements is that systems can spontaneously undergo processes

which decrease the entropy of the system as long as the transformation increases the entropy of the surroundings

to an equal or greater extent.

As we noted above, since entropy is a state function the total change in entropy for the system remains

the same for a reversible and irreversible transformation as long as the transformations have the same initial

and final states. Naturally we can ask the question, how does the entropy change for the surroundings differ

for a reversible transformation versus an irreversible one, if at all?

Recall that the heat absorbed by a system in a reversible reaction is strictly greater than the heat absorbed

in the corresponding irreversible reaction. That is, qrev > qirr. Therefore, for an irreversible reaction, some

of the energy of the system must be lost to the surroundings as heat. Then, dqsur,irr > 0 and therefore

dSsurr > 0. Thus, the entropy change for the surroundings is greater during an irreversible reaction than it is

for the corresponding reversible reaction.

2.3.1 Entropy Change for Four Fundamental Changes of State

As we’ve mentioned previously, although the entropy is defined for reversible processes, we can use that definition

for any sort of change of state because entropy is a state function. In fact, we can find the change in entropy
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for our four favorite transformations of state. Here they are without justification:

Entropy Changes for Fundamental Transformations

Reversible Isochoric Change of State ∆S = CV ln
(
Tf
Ti

)

Reversible Isobaric Change of State ∆S = CP ln
(
Tf
Ti

)

Reversible Isothermal Change of State ∆S = nR ln
(
Vf
Vi

)

Reversible Adiabatic Change of State ∆S = 0

Now here are their justifications:

1. Reversible Isochoric Process. Here, volume is fixed and reversibility is achieved by raising the temperature

of the surroundings slowly, allowing heat to flow into the system to maintain thermal equilibrium.

For an isochoric process, w = 0 and so all of the internal energy of a system is in the form of heat.

Thus,

dqrev = dU = CV dT

and so we can evaluate the change in entropy as

∆S =

∫
dqrev
T

=

∫ Tf

Ti

CV dT

T
= CV ln

(
Tf
Ti

)
(2.3.5)

(note that we can factor CV out of the integral for ideal gasses because it will never vary with temperature).

Notice, unlike heat flow which increases linearly as Tf increases in constant pressure expansion, entropy

increases logarithmically.

2. Reversible Isobaric Process. Recall that reversible isobaric expansion involves substantial heat flow into the

system in order to keep the pressure of the system matched with the constant pressure of the surroundings.

To evaluate the entropy change of reversible isobaric heating we’ll quickly derive a relationship between

heat flow and temperature change. Recall that we define the enthalpy as H = U + PV . Then,

dH = dU + d(PV ) = dqrev + dwrev + PdV + V dP

= dqrev − PdV + PdV + 0

= dqrev

In step 2 we made the substitution dw = −PdV and also V dP = 0 because the transformation is isobaric.

Additionally, recall that dH = CP dT . So, the change in entropy can be computed as

∆S =

∫
dqrev
T

=

∫ Tf

Ti

CP dT

T
= CP ln

(
Tf
Ti

)
(2.3.6)

For an ideal gas, we can rewrite this as

∆S = CP ln

(
Vf
Vi

)
(2.3.7)

which shows how the largest entropy changes occur during expansions when the system is highly com-

pressed. Similar to isochoric heating, whereas heat flow increases linearly with a constant pressure,

entropy increases logarithmically. However, the proportionality constants differ, as CP > CV . Thus, a

given temperature increase at a constant pressure results in a larger entropy increase than at a constant

volume.

3. Reversible Isothermal Process. For ideal gasses, ∆U = 0 which implies that dqrev = −dwrev. Fortunately,
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we have an expression for dwrev, allowing us to compute the change in entropy with relative ease:

∆S =

∫
dqrev
T

=

∫ −dwrev
T

=

∫
PdV

T

=

∫
nRTdV

V T

= nR

∫ Vf

Vi

dV

V

= nR ln

(
Vf
Vi

)
(2.3.8)

4. Reversible Adiabatic Heating. As long as adiabatic expansion is reversible, Equation (2.3.2) requires that

there is no change in entropy since dqrev = 0 along the entire adiabat. Because entropy remains constant,

reversible adiabatic transformations can be regarded as isentropic.

What about the entropy change for irreversible transformations? Let’s consider the irreversible expansion

of a gas against a vacuum. Above we identified that entropy change for the reversible isothermal expansion of

a gas to be

∆S = nR ln

(
Vf
Vi

)

What is different in the irreversible case where the external pressure is zero (the vacuum)? Firstly, there can

be no work done on the surroundings because there is no external pressure. Secondly, there is no heat absorbed

or emitted by the system because the surroundings are a vacuum. Hence, ∆U = 0 (which is consistent with the

isothermal reaction of an ideal gas) and the system must remain along an isotherm during this transformation,

implying that PV is constant. Thus, for this irreversible expansion, we have that

∆S = nR ln

(
Vf
Vi

)
= nR ln

(
Pi
Pf

)

Another important thing to note about this scenario which contrasts its reversible counterpart is the entropy

change of the surroundings. For the reversible expansion, ∆Suniv = 0 (as for any reversible process) because

although the system absorbs heat as it expands (∆S > 0), it simultaneously does work on its surroundings

(∆S < 0) and we’re in accordance with the second law of thermodynamics.

For the irreversible transformation, however, the expansion against a vacuum can be though of as an

isolated system (a vacuum is nothing, after all). Thus, there are no surroundings to counteract the positive

change in entropy of the system and therefore

∆Ssys = ∆Suniv > 0

which is consistent with the process being spontaneous.

2.3.2 The Microscopic View of Entropy

So far we’ve dealt with entropy from a macroscopic level, considering heat flow through a system. A far

more profound definition for entropy comes from statistical mechanics in the form of the Boltzmann equation.

Mathematically, it can be expressed as

S = kB ln Ω (2.3.9)

where kB = R/NA ≈ 1.381 × 10−23 J/K is the Boltzmann constant and Ω is the number of microstates for a

system. Interestingly, this equation is engraved on Ludwig Boltzmann’s tombstone in Vienna, Austria.

Let’s consider the simplified example of the expansion of a gas in a lattice: For a lattice with L spaces
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available to occupy and N total molecules within the lattice, there are

(
L

N

)
=

L!

N !(L−N)!

total ways to arrange the (indistinguishable) molecules. Considering the expansion of a gas, we can think of

the initial volume containing L1 lattice cells and the final volume containing L2 lattice cells. The change in

entropy can be computed using the Boltzmann equation:

∆S = Sf − Si = kB ln

(
L2

N

)
− kB ln

(
L1

N

)

= kB

[
ln

(
L2!N !(L1 −N)!

N !L1!(L2 −N)!

)]

= kB ln

(
L2!(L1 −N)!

L1!(L2 −N)!

)

This expression is not very computationally friendly. We can simplify this result using Stirling’s Approximation,

ln(x)! = x lnx− x

which becomes more accurate as x becomes larger. There is a more technical version of this approximation but

I’m not really concerned with that. Approximations are lame to begin with.

Let’s apply this formula to our expression above (I’m gonna omit some of the algebra because I trust

myself to be able to do it any other time):

∆S

kB
= ln

(
L2!(L1 −N)!

L1!(L2 −N)!

)

= ln(L2)! + ln(L1 −N)!− ln(L1)!− ln(L2 −N)!

≈ L2 ln(L2) + (L1 −N) ln(L1 −N)− L1 ln(L1)− (L2 −N) ln(L2 −N)

= L2 ln

(
L2

L2 −N

)
+ L1 ln

(
L1 −N
L1

)
−N ln

(
L1 −N
L2 −N

)

In the majority of physical systems, a container of gas will be mostly empty so that L1, L2 � N and we can

simplify our approximation as

∆S

kB
≈ L2 ln

(
L2

L2

)
+ L1 ln

(
L1

L1

)
−N ln

(
L1

L2

)

⇒ ∆S = kBN ln

(
L2

L1

)

If we say that each lattice cell has volume VL then V2 = L2VL and V1 = L1VL so that

∆S = kBN ln

(
V2

V1

)
= nR ln

(
V2

V1

)
(2.3.10)

which agrees exactly with our formulation for the entropy change at the macroscopic level. To make the final

substitution above note that NAkB = R and that NA = N/n where N is the number of molucules and n is the

number of moles.

2.4 Free Energy

Free energy can be defined as the maximum amount of work a thermodynamic process can do at a constant

temperature and its sign indicates whether or not the process is spontaneous (this is true for both the Helmholtz

and Gibbs free energy; both have temperature as a natural variable and are tied to the work done during a
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reaction).

The basic definition of free energy is a measure of a system’s ability to cause change. Free energy, in slight

contrast, is the measure of a system’s ability to do work at a constant temperature, i.e., the “useful” energy.

2.4.1 Helmholtz Free Energy

The Helmholtz free energy 1 , defined before the Gibbs free energy, is defined as

A ≡ U − TS (2.4.1)

and is an indicator of spontaneity for processes which occur at a constant volume and temperature, as indicated

by the total partial differential of A:

dA =

(
∂A

∂V

)

T

dV +

(
∂A

∂T

)

V

dT (2.4.2)

The Helmholtz free energy is useful for gas-phase reactions or for isolated systems kept at a constant

volume. This is the main distinction between the Helmholtz and Gibbs free energies: While Helmholtz energy

is useful for reactions at a constant volume, say, a transformation within a bomb calorimeter, the Gibbs energy

is useful for transformations at a constant pressure where ∆H = q.

2.4.2 Gibbs Free Energy

Gibbs free energy is defined as

G ≡ H − TS (2.4.3)

and is an indicator of spontaneity for processes which occur at a constant pressure and temperature, as indicated

by the total partial differential of G:

dG =

(
∂G

∂P

)

T

dP +

(
∂G

∂T

)

P

dT (2.4.4)

The Gibbs free energy is an invaluable measure for thermodynamic processes, as most take place at a constant

P and T . In fact, G is independent of the PdV work needed to “make space for additional molecules” and

therefore equals the work not associated with system expansion or compression at a constant temperature.

Hence, it has immense utility for solution-phase chemistry.

The quantities for each partial derivative of G can be found as follows:

dG = dH − d(TS) = d(U + PV )− d(TS)

= dU + d(PV )− d(TS)

= dq + dw + PdV + V dP − TdS − SdT
= TdS − PdV + PdV + V dP − TdS − SdT
= V dP − SdT

Thus, we find

(
∂G

∂P

)

T

= V &

(
∂G

∂T

)

P

= −S

1The designation A for the Helmholtz free energy comes from the German word for work, arbeit. This makes sense with the
context that free energy is the maximum amount of work a process can do at a constant temperature.
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2.5 Spontaneity

Any system that does not evolve over time is said to be at equilibrium. Otherwise, the direction of evolution is

the spontaneous direction. A spontaneous process will occur without additional work being done on the system.

Most spontaneous processes are irreversible, and the processes that are spontaneous and reversible must be

spontaneous in both directions, in accordance with the second law of thermodynamics.

Spontaneity does not imply that the process occurs immediately. Rather, that it will occur with a very

high probability once the barrier of change is overcome. Take the combustion of wood into carbon dioxide and

water as an example. The process can only begin at very high temperatures but once it does it will proceed

until all of the wood is used.

One of the driving forces behind a spontaneous process is the spreading out of energy as heat rather

than through work. In developing a new state function that allows us to predict the direction of this energy

dispersion, we can utilize the first law of thermodynamics. Because heat flow is a key factor in the spontaneous

direction, we can write the first law as follows, for an ideal gas undergoing reversible changes to volume and

temperature:

dqrev = dU − dwrev
= CV (T )dT + PdV

= CV (T )dT +
nRT

V
dV (2.5.1)

Recall that in order for a function to be a state function its mixed partial derivatives must be equal. So, let’s

test that: (
∂CV (T )

∂V

)

T

6=
(
∂(nRT/V )

∂T

)

T

So close! Notice, however, that if we divide both sides of the equation by T we can make it so these partials

are equal: (
∂CV (T )/T

∂V

)

T

=

(
∂(nRT/V T )

∂T

)

T

= 0

Thus, dqrev/T is a state function that we define as entropy :

dS =
dqrev
T

(2.5.2)

In contrast to the macroscopic view of spontaneity mentioned above we can also discuss and analyze the

microscopic view of spontaneity and see how the two approaches are connected.

As an example, consider a mixture of 1 mole of a unique molecule and 1 mole of a different molecule in a

lattice where the members of each species are indistinguishable. If we distributed the molecules such that one

species occupied one half of the box and the other species occupied the other half of the box then there would

only be one microstate for the system. In contrast, if we allowed each species to occupy anywhere on the lattice

(affording more of a “mixed” state), there are many more possible arrangements of molecules in space.

The microstates consistent with a description of “mixed” are not necessarily more likely to occur, however,

there are vastly more arrangements that can be described as mixed than those that cannot. From a probability

standpoint, then, the likelihood of being in the “mixed” state is much greater because of the number of

arrangements that are mixed.

Thus, given enough time to explore all such microstates which are mixed or nonmixed, at equilibrium a

system will be mixed because it is much more likely to occupy that state.

2.5.1 Criteria for Spontaneity

There are numerous criteria for spontaneity depending on the conditions of the system and which properties

of a substance are being held constant, if any. Below is a table illustrating the different conditions and system
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could be under and the corresponding indicator of spontaneity:

Criteria for Spontaneity

Indicator Condition

dS ≥ 0 Isolated system (dq = dw = 0)

dU ≤ 0 Constant entropy S and volume V

dH ≤ 0 Constant entropy S and pressure P

dF ≤ 0 Constant volume V and temperature T

dG ≤ 0 Constant pressure P and temperature T

As we can see from above, entropy is an indicator of spontaneity when the system is isolated, that is,

when neither matter nor energy is exchanged between the system and its surroundings. This agrees with our

intuition behind the second law of thermodynamics because the universe itself can be considered an isolated

system. In reality, however, the reactions we deal with are not often isolated. So, we need a better indicator of

spontaneity for most thermodynamic processes: Enter Gibbs free energy.

Okay I lied about Gibbs free energy entering I’m gonna make a quick aside first. Notice that under a

constant temperature we should immediately focus on the free energy of a system. Meanwhile, under a constant

entropy (which will pretty much only ever happen when considering mechanical systems) we’ll shift our focus

away from free energy and instead focus on the internal energy and enthalpy. These are easy rules to keep in

mind, not as easy as when to use the entropy as an indicator of spontaneity though, which can be considered

in nearly every case as having some effect on the spontaneity of a reaction. Now, enter Gibbs free energy.

As we can see from the table above, the Gibbs free energy is an indicator of spontaneity at a constant

pressure and temperature, 2 variables which can be held constant for a thermodynamic system with relative

ease. In fact, this is the case because the pressure and temperature are oftentimes interacting with the pressure

and temperature of the surroundings which are more or less constant over the course of a reaction. Although

we could use any of the other state functions to indicate spontaneity for any sort of process, there is oftentimes

a clear choice as to which will be the best.

With this idea in mind, consider what might make a good indicator for a simple mechanical system,

composed of a few moving parts. If you’ve taken an introductory physics class you’ll know that we use the

internal energy of a system U to indicate spontaneity in this case. Why? For a simple mechanical system,

the entropy virtually does not change since the number of microstates are limited with so few “particles”

(“particles” in this case being the macroscopic objects). Moreover, the volume of the system will likely not

change (consider the example of rolling a ball down a hill; theres no volume change whatsoever here). Thus,

the internal energy of the system will be a great indicator of spontaneity.

The relationships described above will be illustrated whilst deriving the Maxwell relations in the following

section.

2.5.2 Some Spontaneity Questions

I’ve begun studying for finals. Here are some questions regarding spontaneity. For each scenario, state whether

it is certainly, not necessarily, or certainly not spontaneous and provide a brief justification.

1. Under constant temperature and pressure, an ideal polymer expands to its maximal extension. At a

constant temperature and pressure we’ll want to consider the Gibbs free energy associated with this

process. Recall that we define the change in Gibbs free energy as

∆G = ∆H − T∆S

In the case of extension, we can assume that ∆H � ∆S because although there might be some change in

enthalpy due to changing intermolecular reactions, it is nowhere near the change in entropy. Moreover, we

know that the entropy change will large and negative since extension is associated with fewer arrangements
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and microstates. Then, by Boltzmann’s equation, the entropy change will be negative. Hence, ∆G will

be (potentially very) large and positive and this reaction will certainly not be spontaneous.

2. Under a constant temperature, an ideal gas expands to its maximal volume. This reaction is certainly

spontaneous. First, just by using the example of what we observe in everyday life, we know that gasses

expand to fill their containers (spontaneously). So, if I were to go into a Macy’s and get sprayed by those

people who spray the perfume, the perfume wouldn’t just idly in the place I was standing, it would diffuse

throughout the store! Figure 2.1 is provided for any visual learners.

Figure 2.1: Me running through a Macy’s.

Now, a more thermodynamic approach. Notice that with the expansion of a gas, there will be a greater

number of microstates associated with the final (larger) volume than with the initial (smaller) volume.

Hence, by Boltzmann’s equation we have that the change in entropy must be positive and therefore this

reaction is always spontaneous.

Now, another more thermodynamic approach. Notice that this system is isolated so that we can use

the entropy of the isothermal expansion to predict spontaneity. Then,

dS =
dq

T
=
−dw
T

=
PextdV

T
=
nR

V
dV

∆S = nR

∫ Vf

Vi

dV

V

= nR ln

(
Vf
Vi

)

Hence, the change in entropy is positive since Vf > Vi and the reaction is certainly spontaneous.

3. Under a constant temperature and pressure, a chemical reaction proceeds in which the products are more

“ordered” than the reactants. Constant temperature and pressure should immediately sound the alarm

for using Gibbs free energy. Similar to the first question, recall that

∆G = ∆H − T∆S

so that the Gibbs energy is dependent on two quantities, enthalpy and entropy. Now, for just a moment

consider the following two reactions:

2Al(s) +
3

2
O2(g) −−→ Al2O3(s), ∆G̃f = −1.528 kJ/mol

Ag(s) +
1

2
N2(g) +

3

2
O2(g) −−→ AgNO3(s), ∆G̃f = 19.8 kJ/mol

Clearly, both of these reactions have a decrease in entropy, based off of the number of products and their
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phases. However, the signs of the Gibbs free energies of formation are different! That is all to say, there

can be a decrease in entropy for a chemical reaction which is spontaneous. Hence, this is not necessarily

spontaneous.

4. Under constant temperature and pressure, a chemical system where the species are at their equilibrium

concentrations returns to the standard state conditions. I mean I feel like this one is obvious. Clearly,

work must be done on the system in order for it to progress away from equilibrium. In fact, if movement

in one direction away from equilibrium were spontaneous and therefore movement in the other direction

were not spontaneous, we’d be violating the second order of thermodynamics. Thus, this is certainly not

spontaneous.

5. At T = 273.15 K, water transforms entirely from liquid to solid.

2.6 Maxwell Relations

The Maxwell relations are a system of partial differential equations which relate thermodynamic quantities

which would typically be very difficult to measure. They can be derived from the equality of mixed partial

derivatives and come from the definitions of the familiar thermodynamic potentials, U , H, F , and G.

It is important to note that these relations hold for all reversible and irreversible processes.

The four most common Maxwell relations utilize the definitions of the state functions named above. Here

they are:

∂2U

∂S∂V
=

(
∂T

∂V

)

S

= −
(
∂P

∂S

)

V

(2.6.1)

∂2H

∂S∂P
=

(
∂T

∂P

)

S

=

(
∂V

∂S

)

P

(2.6.2)

∂2F

∂T∂V
=

(
∂S

∂V

)

T

=

(
∂P

∂T

)

V

(2.6.3)

∂2G

∂T∂P
=

(
∂S

∂P

)

T

= −
(
∂V

∂T

)

P

(2.6.4)

2.7 Joule-Thomson Effect

The Joule-Thomson Effect is a measure of the deviation of the behavior of a real gas from the behavior of an

ideal gas. In simple terms, it acts as a measure of how much intermolecular forces affect the behavior of gas

molecules. For the purposes of this section, we’ll define an ideal gas as one which obeys two conditions:

1. Boyle’s Law is obeyed, i.e., PV = f(T ) for some well-behaved2 function f .

2. The internal energy of the gas is independent of the volume of the gas and is a function of solely the

temperature, U = g(T ), for some well-behaved function g.

Based on these guidelines, we can define the enthalpy as a function of temperature based on Equation (2.2.1):

H = U + PV = h(T ) (2.7.1)

for some well-behaved function of the temperature T , h(T ) = f(T ) + g(T ).

The absence of a volume-dependence on the internal energy of a gas was suggested based on experimental

data wherein scientists allowed a gas to expand into a previously evacuated container without work or heat

allowed to flow into the container from the surroundings. This experiment, however, maintained limited sen-

sitivity due to the large heat capacity of the walls of the containers in comparison to the heat capacity of the

2“well-behaved” refers to a function being differentiable over the entire interval which we’ll consider.
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gasses being studied. Subsequently, in another experiment which controlled for this, real gasses were shown to

undergo a temperature change, and therefore an energy change, upon expansion.

One of the most important principles underlying our definition of the Joule-Thomson coefficient is that

the expansion of a real gas is isenthalpic, that is, it occurs at a constant enthalpy. To see why this is true,

suppose that we use an experimental apparatus which allows a known quantity of gas to flow through a porous

plug. To the left of the plug the gas exists at pressure and temperature (P1, T1) and to the right of the plug

the gas exists at a pressure and temperature (P2, T2). Since the process is adiabatic (we’re assuming so), the

change in internal energy is given by the work done on the system:

∆U = U2 − U1 = w

Similarly, the work done on the system is PV -work so that w = P1V1 − P2V2 and we have that

U2 − U1 = w = P1V1 − P2V2

U2 + P2V2 = U1 + P1V1

H2 = H1

Thus, the change in enthalpy for the entire process remains at zero. Using this result and the total partial

differential of the enthalpy, accounting for zero volume change across both sides of the porous plug, we have

that

dH =

(
∂H

∂P

)

T

dP +

(
∂H

∂T

)

P

dT = 0 (2.7.2)

Hence, the Joule-Thomson coefficient is defined as

µ = − (∂H/∂P )T
(∂H/∂T )P

(2.7.3)

Above, µ represents the limiting value of the experimental ratio of temperature difference to pressure difference

as the pressure difference approaches zero. Written in terms of a limit,

µ = lim
∆P→0

(
∆T

∆P

)

H

(2.7.4)
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3

HEAT AND WORK

If there were matter so rare in the universe that we could only perform one measurement on it, we

should measure its heat capacity.

—Albert Einstein

3.1 Work

There are tons of ways work can be performed:

Work!

Type of Work Intensive Variable Extensive Variable Differential Work, dw

Hydrostatic Pressure, P Volume, V −PextdV
Surface Surface Tension, γ Area, A γdA

Elongation Force, F Length, L FdL

Electrical Potential Difference, ϕ Electrical Charge, Q ϕdQ

Gravitational Gravitational Potential, gh Mass, m mgdh

Most of the time we’re interested in pressure-volume (PV ) work. Looking at this one in the table, why is

there a negative for the differential work, dw = −PextdV ? Well, consider the cases in which volume could

change: If ∆V < 0 then work is done on the gas and w > 0. Conversely, if ∆V > 0 the gas does work on the

surroundings and so w < 0.

Aside from most of the time, the numerous other types of work show up often. Consider a mechanical

example, involving the stretching of a spring. By Hookes’ Law we have F = kx where k is some proportionality

constant and x is the displacement from equilibrium for the spring (this scenario is represented as “Elongation”

in the table above). Then, the work done is given by w = Fx, or dw = Fdx for some differential change in

distance.

Another, I think more interesting example/problem, can come from considering the surface tension of a

lipid vesicle and how it affects the surface area of the vesicle: Consider a lipid molecule which self-assembles

20
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into a sphere whose shape is determined predominantly by the surface area and surface tension of the vesicle.

Then, we’re interested in the differential work dw = γdA.

For a process carried out at a constant temperature and constant area, let’s write down a condition for

spontaneity in terms of free energy. To do this we’ll consider the Helmholtz free energy:

F = U − TS
dF = dU − d(TS)

= dq + dw − TdS − SdT
≤ TdS + γdA− TdS − SdT

dF ≤ γdA− SdT

Thus, at a constant area and temperature, we see that the condition for spontaneity is simply dF ≤ 0.

Now, suppose that the internal energy and entropy of the vesicle are given by the following expressions:

U(A, γ) =
γ

A0
(A−A0)2

S(A) = kB ln(A/a)

for some initial area A0 and a real number a. Write down an expression for F , the Helmholtz free energy of

the system: To do this, all we have to consider is the functional form of the Helmholtz free energy we already

wrote above. Thus,

F = U − TS

F (A, γ) =
γ

A0
(A−A0)2 − T [kB ln(A/a)]

which is the final answer. Notice that we’ve expressed the Helmholtz free energy as a function of only A and γ.

Now, suppose that I’m interested in how to measure

(
∂γ

∂T

)

A

but that I’m incapable of varying the temperature for some reason. Is there an alternate expression we could

use to compute this partial derivative? Yes.

Recognize that we can use the Maxwell relation for the Helmholtz free energy,

(
∂2F

∂A∂T

)
=

(
∂2F

∂T∂A

)

by recognizing that (∂F/∂A)T = γ and (∂F/∂T )A = −S. Thus, we have that

(
∂γ

∂T

)

A

= −
(
∂S

∂A

)

T

We can take the derivative of S with respect to A at a constant temperature in the expression above to afford

the simple expression (
∂γ

∂T

)

A

= −kB
A
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3.1.1 Irreversible Expansion of an Ideal Gas

3.2 Heat

3.2.1 Heat Capacities

Heat capacity is defined as the amount of heat necessary to cause a unit change in the temperature of the

substance. Symbolically, this can be written as

C ≡ dq

dT
(3.2.1)

Since C is a function of heat (an inexact differential), the heat capacity of a substance depends on the path of

a transformation.

Note that for an ideal gas, we can take the heat capacity of a substance to be constant. In contrast, the

heat capacity of a real gas will be a function of temperature.

The heat capacity of a system heated at a constant volume, CV differs from that at a constant pressure,

CP . Both are state functions, but they represent two different state functions. Thus, it is important to specify

between the two:

CV =

(
dq

dT

)

V

& CP =

(
dq

dT

)

P

Note that CP > CV for any substance. Why? To rephrase the question, we’re interested in why it takes more

heat to raise the temperature of a gas under a constant pressure than it does under a constant volume. The

difference is that at a constant volume, the gas can’t do work so that all of the heat goes into kinetic energy,

i.e., raising the temperature. In contrast, at a constant pressure, the gas can do work on the surroundings and

so some heat will also cause the gas to expand.

The importance and relevance of heat capacity cannot be stressed enough. The flow of heat appears

explicitly in the first law of thermodynamics and therefore the heat capacity, a quantity which directly relates

the flow of heat to the temperature at which a process is occurring, warrants particular attention.

Since dq is an inexact differential we’d like an alternative definition for CV and CP based on something

that is more easily calculable, such as a state function. Let’s begin by trying to rewrite CV in terms of a state

function: Notice that at a constant volume we can rewrite the first law as

(dU)V = dq + dw = dq

since there can be no work done due to the fact that the volume is unchanging (dV = 0). Thus, we can express

the internal energy as

(dU)V = dq = CdT
(
∂U

∂T

)

V

= CV (T ) (3.2.2)

which gives us a relationship between the internal energy and the heat capacity at a constant volume. Notice

that this result is general. That is, for any transformation of an ideal gas we can use this relationship since

U is path independent. This idea wrinkled my brain for a while, but I recommend looking at some example

problems regarding transformations of an ideal gas, drawing the transformations on a PV diagram, and finding

a path where we can definitively say that this equality holds no matter what. In fact, here’s an example:

PV shenanigans

Let’s return to heat capacities. In particular, let’s try to find an analogous expression for CP as we did

with CV above. Whenever we think about constant pressures, enthalpy should be the first thing that pops into
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our minds. So, let’s run with that. Consider a differential change in enthalpy:

dH = dU + d(PV )

= dq + dw + d(PV )

= dq − PdV + PdV + V dP

= dq + V dP

at a constant pressure, we have that

(dH)P = dq = CdT
(
∂H

∂T

)

P

= CP (T ) (3.2.3)

which affords the relationship between heat capacity at a constant pressure and enthalpy that we were looking

for. Similar to the Equation (3.2.2), this result is general. In a manner similar to how we “proved” it above,

try to convince yourself that we can use this result for the transformation of any ideal gas.

3.2.2 The Heat Capacity Ratio

For an ideal gas, the heat capacity of a substance is constant with temperature. In fact, we can relate the heat

capacity at a constant pressure to that at a constant volume with the Mayer’s relation:

CP − CV = nR (3.2.4)

using molar heat capacities this takes the form C̃P − C̃V = R. As a result, if we know the heat capacity at a

constant pressure for an ideal gas we can immediately determine its heat capacity at a constant volume.

Another relationship we are often interested in is the ratio of these heat capacities, namely

γ =
C̃P

C̃V
=
CP
CV

(3.2.5)

(I believe I hint at this relation in Section ?? on adiabatic transformations. Refer to that section for this

relations utility I guess). Two values of γ that come up often are those for a monatomic and diatomic ideal gas

and are worth remembering:

For a monatomic gas, γ = 5/3

For a diatomic gas, γ = 7/5

Both of these relations stem from the following facts about ideal gasses:

Monatomic Gas Diatomic Gas

CP 3nR/2 5nR/2

CV 5nR/2 7nR/2

I already mentioned this but its worth repeating: The heat capacity at a constant pressure is always greater

than the heat capacity at a constant volume for all substances. That is, CP > CV always. This guarantees that

γ > 1 for all substances.

Interestingly, we can alternatively compute γ for an ideal gas using the degrees of freedom f of a monatomic

or diatomic gas:

γ = 1 +
2

f
(3.2.6)

For a monatomic gas, an atom has 3 degrees of freedom: It can translate in any of the x, y, or z directions. Thus,

γ = 5/3 for a monatomic gas as written above. For a diatomic gas, the molecule has all of the translational
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freedom as does a monatomic gas, however, it has the added ability to stretch in the direction of either atom,

affording 5 degrees of freedom. Then, γ = 7/5 for a diatomic gas as posited above.

Now, what about real gasses? For real gasses, the main difference is that the heat capacity is a function of

temperature, as noted above. However, as the temperature increases (or decreases) both CP and CV increase

(or decrease) at a similar rate so that Mayer’s relationship becomes a good guess, that is, CP − CV ≈ nR.

This constant difference reflects the relatively constant PV work done during a transformation at a constant

pressure versus at a constant volume.

Unlike their difference, the ratio between CP and CV decreases with an increasing temperature. Since

both heat capacities increase as the temperature increases,

γ =
CP
CV
→ 1 as T →∞

Using Equation (3.2.6), this result should make some intuitive sense because as the temperature increases the

number of degrees of freedom a substance has increases as well.

Importantly, keep in mind that this limit does not hold for ideal gasses because the heat capacities of an

ideal gas are unchanging. Then, the ratio of CP /CV will remain the same always for an ideal gas.

3.3 Fundamental Changes of State

Without any explanation, here are expressions for work and heat for the four most common fundamental

changes of state we’ll encounter for an ideal gas:

Work and Heat for Different Changes of State

Condition Work Done on System Heat Absorbed by System ∆U

Isobaric −P∆V
∫ Tf
Ti

CP dT = CP∆T
∫ Tf
Ti

CP dT − P∆V

Isochoric 0
∫ Tf
Ti

CV dT = CV ∆T
∫ Tf
Ti

CV dT

Isothermal −nRT ln(Vf/Vi) nRT ln(Vf/Vi) = −w 0

Adiabatic CV ∆T 0 CV ∆T

3.3.1 Reversible Isobaric Transformations

A reversible isobaric transformation is a constant pressure process that can occur spontaneously in either

direction without additional work being done on the system.

We’ll first consider the work done during one of these processes: Reversible constant pressure-volume

change results in a very simple work calculation when the external pressure is constant:

w = −
∫
PextdV = −Pext

∫
dV = −Pext∆V

For a quasistatic process we can assume Psys = Pext and simplify this result as

w = −P∆V (3.3.1)

Expansion involves ∆V > 0 which agress with our intuition that the expansion of an ideal gas does work on

the surroundings.

Comparing reversible isobaric expansion to reversible isothermal expansion, it should make intuitive sense

that ∆T > 0 in the former, since isobars move through higher temperature isotherms during expansion. To

understand this temperature increase we’ll consider the expansion of a gas on a molecular level. Because the

number of moles of gas is constant, at a larger volume the gas density is lower and therefore to maintain

a constant pressure the gas molecules must be imbued with more energy to maintain the sam frequency of

collisions. In order to give these molecules more energy their must be a temperature increase.
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Now we’ll consider the heat flow during one of these processes: When an ideal gas expands at a constant

pressure, the appropriate heat capacity is CP . Moreover, it cuts upward through isotherms on the PV diagram

and is therefore associated with an increase in temperature. We’ll start by rearranging Equation (3.2.1) and

using CP :

dq = CP dT

q =

∫ Tf

Ti

CP dT

The solution to this integral will depend on how the heat capacity changes with temperature. For most systems,

CP can very greatly even across large temperature ranges. However, over small temperature ranges (those often

encountered in a laboratory) the heat capacity can be treated as independent of the temperature so that we

can evaluate the integral with ease:

q = CP

∫ Tf

Ti

dT = CP (Tf − Ti) (3.3.2)

Additionally, it’s important to note that for ideal gasses, CP (and CV , for that matter) is constant1. We can

also rewrite the change in internal energy of the system using this expression for heat and our expression for

work during a reversible isobaric transformation, Equation (3.3.1):

∆U = q + w = CP∆T − P∆V (3.3.3)

3.3.2 Reversible Isochoric Transformations

A reversible isochoric transformation is a constant volume process that can occur spontaneously in either

direction without additional work being done on the system.

First we’ll consider the work done during one of these processes: When the pressure of a gas is increased

at a constant volume, no work is done. If we try to evaluate the work integral,

w = −
∫
PextdV = 0 (3.3.4)

because dV = 0 for an isochoric process.

Now we’ll consider the heat flow during one of these processes: The heat flow for a constant volume

process can be analyzed in the same way as the constant pressure transformation, using CV instead of CP :

q =

∫ Tf

Ti

CV dT = CV ∆T (3.3.5)

Similar to above, the second equality holds only when CV is not a function of temperature. In a constant

volume process (and also dealing with an ideal gas), since there is no work done on the surroundings the change

in internal energy of the system can be written as

∆U =

∫
dq = CV ∆T

Once again, we see that the internal energy of an ideal gas is a function of only the temperature. This fact

holds in general and is worth remembering.

1For monatomic gasses, CP = 5nR/2 and CV = 3nR/2. For diatomic gasses, CP = 7nR/2 and CV = 5nR/2. In both cases
CP − CV = nR. This is a fact that will come in handy whenever we deal with ideal gasses.
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3.3.3 Reversible Isothermal Transformations

A reversible isothermal transformation is a constant temperature process that can occur spontaneously in either

direction without additional work being done on the system.

First we’ll consider the work done during one of these processes: When a gas expands isothermally, there

is an associated change in pressure and therefore pressure is not constant like it was in the isobaric case. To

get around this, we can use the ideal gas law to evaluate the work integral:

w = −
∫
PextdV = −

∫ Vf

Vi

nRT

V
dV = −nRT

∫ Vf

Vi

dV

V
= −nRT ln(V )|VfVi = −nRT ln

(
Vf
Vi

)

Thus,

w = −nRT ln

(
Vf
Vi

)
(3.3.6)

for the isothermal expansion of an ideal gas.

Expansion of a system causes Vf > Vi so that the logarithm in the final step is positive which is associated

with negative work done on the system and positive work done on the surroundings which agrees with our

intuition about work associated with the expansion of a gas.

For isotherms, heat must flow into the system during reversible expansion in order to keep the temperature

constant. This is somewhat clear when comparing the curves in the PV diagram for isothermal expansion and

adiabatic expansion. From a molecular perspective, the work done on the surroundings causes a loss in energy

for the gas molecules, thereby decreasing the energy and temperature of the gas. Thus, to maintain temperature,

heat must flow into the system.

Comparing reversible isobaric expansion to reversible isothermal expansion, it should make intuitive sense

that ∆T > 0 in the former, since isobars move through higher temperature isotherms during expansion. To

understand this temperature increase we’ll consider the expansion of a gas on a molecular level. Because the

number of moles of gas is constant, at a larger volume the gas density is lower and therefore to maintain

a constant pressure the gas molecules must be imbued with more energy to maintain the sam frequency of

collisions. In order to give these molecules more energy their must be a temperature increase.

We could also make this argument using the First Law, dU = dq + dw. Since the internal energy of an

ideal gas is dependent only on temperature, during an isothermal expansions we’d expect dU = 0. Since dw < 0

we require that dq > 0 in order to not break any fundamental laws of physics.

Now we’ll consider the heat flow during one of these processes: For an isothermal expansion, there is no

temperature change (as the name implies) and therefore dT = 0. So, we cannot employ the same method as

above. Instead, recognize that for an ideal gas, ∆U = 0 (since U(T ) is a function of temperature for an ideal

gas) and so we have the equality

q = −w = nRT ln

(
Vf
Vi

)
(3.3.7)

which comes from the calculation done in Equation (3.3.6) for the work done during reversible isothermal

expansion.

3.3.4 Reversible Adiabatic Transformations

A reversible adiabatic transformation is a process in which no heat is exchanged with the system’s surroundings

(that is, dq = 0) that can occur spontaneously in either direction without additional work being done on the

system.

First we’ll consider the work done during one of these processes: Unlike any of the other state changes, an

adiabatic transformation is more difficult to analyze because there is an associated change in pressure, volume,

and temperature. For an adiabatic expansion, the heat flow is zero (dq = 0) and so the change in internal

energy is due to only the work performed during the transformation. So, in order to evaluate the work we need
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an expression P = P (V ), that is, a functional expression for the pressure of the system in terms of only the

volume.

The decrease in pressure for an adiabatic expansion of an ideal gas is similar to that of an isothermal

expansion, however, the decrease is much sharper because the heat flow that is required to maintain constant

temperature is prevented by the adiabatic boundary. This dependance suggests a decay of the form

P =
λ

V γ

for some proportionality constants λ and and γ > 1.

From here, recognize that for a particular adiabat, the constant λ must remain unchanged at all points

(P, V ) on the PV diagram. Thus,

PV γ = PiV
γ
i

which affords an expression for the pressure as a function of the volume,

P =
PiV

γ
i

V γ
(3.3.8)

Now we can plug this into the work integral:

w = −
∫
PdV = −

∫ Vf

Vi

PiV
γ
i

V γ
dV

= −PiV γi
∫ Vf

Vi

dV

V γ

= −PiV γi
[
− 1

(γ − 1)V γ−1

]Vf

Vi

=
PiV

γ
i

γ − 1

(
1

V γ−1
f

− 1

V γ−1
i

)

This form can be used directly to compute the work done in an adiabatic process, but it’s not super friendly.

However, for an ideal gas we can take advantage of the fact that CP − CV = nR to simplify the expression

above: Recall that γ = CP /CV so that

CP − CV
CV

=
nR

CV

γ − 1 =
nR

CV

and we can substitute this result into our expression for the work:

w =
PiV

nR
CV

+1

i
nR
CV

(
1

V
nR
CV

f

− 1

V
nR
CV
i

)

=
PiViCV
nR

[(
Vi
Vf

) nR
CV

− 1

]
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From here we’ll utilize the ideal gas law and replace pressure with temperature and volume, giving

w =
nRTiCV
nR

[(
Vi
Vf

) nR
CV

− 1

]

= TiCV

[(
Vi
Vf

) nR
CV

− 1

]

= CV

[
Ti

(
Vi
Vf

) nR
CV

− Ti
]

Now for a little algebraic gymnastics. We’ve already shown why PV γ = PiV
γ
i for an adiabatic process, so

briefly consider the adiabatic expansion of an ideal gas from (Pi, Vi) to (Pf , Vf ): Using the ideal gas law, we

can express this relationship as

PiV
γ
i = PfV

γ
f

nRTi
Vi

V γi =
nRTf
Vf

V γf

TiV
γ−1
i = TfV

γ−1
f

Tf =

(
Vi
Vf

)γ−1

Ti

Now we’ll mess around with the exponent, γ − 1 a little bit:

γ − 1 =
CP
CV
− 1 =

CP − CV
CV

+
CV
CV
− 1 =

nR

CV

Why go about all this trouble? Well, we’ve just shown that

Tf =

(
Vi
Vf

) nR
CV

Ti

and so our equation for the work done in an adiabatic process simplifies to

w = CV (Tf − Ti) = CV ∆T (3.3.9)

Now we’ll consider the heat flow during one of these processes: For an adiabatic process, dq = 0 and

so there is no heat flow! Then, the change in internal energy is given solely by the work done during the

transformation:

∆U = w = CV ∆T (3.3.10)

3.4 Heat Engines

An engine is simply a device that uses a cycle to convert energy from one form to another and always returns

to its original state once the process is complete. In particular, a heat engine is one that receives heat (qin) from

a hot thermal reservoir and converts some of it into mechanical work. As we’ll see, in reality it is impossible

to convert all of this heat into mechanical work (this is the Kelvin Statement). Since not all of this heat is

transformed into work, some of it must be lost to the surroundings (qout).

3.4.1 The Carnot Engine

The Carnot engine is a theoretical ideal thermodynamic cycle and provides an upper limit on the efficiency

of any classical thermodynamic heat engine. A major consideration to make about the Carnot cycle is that it

is purely theoretical. Not only do we assume perfectly reversible reactions but also ideal gasses.



3.4. HEAT ENGINES 29

With this in mind (and the first law of thermodynamics, as always), when considering a heat engine we

see that all of the heat received by an engine (qin) cannot be converted into work (wout) while some of it is lost

as heat.

In an analysis of engines it is useful to define the efficiency of an engine, ε

ε =
wout
qin

=
qin − qout

qin
= 1− qout

qin
(3.4.1)

The Carnot cycle is defined by 4 particular transformations of an ideal gas:

1. Reversible isothermal expansion at a hot temperature (Th)

2. Reversible adiabatic expansion to a cold temperature (Tc)

3. Reversible isothermal compression to a hot temperature (Th)

4. Reversible adiabatic compression to a cold temperature (Tc)

The fourth step completes the cycle, returning the engine to its initial state. We’ll analyze the heat and work

flow in each of these steps. Note that for all of these steps, qin refers to the heat absorbed by the engine from

the thermal reservoir and qout refers to the heat extracted from the engine and released into the surroundings

(typically this is a cooling rod or some other very cold substance). Similarly, win refers to the work done on

the engine and wout refers to the work the engine does on its surroundings. Additionally, I’ll refer to the hot

temperature of the thermal reservoir as Th and the colder temperature as Tc.

1. Reversible Isothermal Expansion from Hot to Hot

For an isothermal expansion we can compute the work easily:

win = −wout = −
∫
PdV = −

∫ Vf

Vi

nRTh
V

dV = −nRTh ln

(
Vf
Vi

)

Thus, we see that the work output by the engine in the first step is

wout = nRTh ln

(
Vf
Vi

)

In the isothermal expansion of an ideal gas ∆U = 0 so by the First Law of Thermodynamics we have

qout = −wout so that qin = wout and we can express the heat absorbed by the system as

qin = wout = nRTh ln

(
Vf
Vi

)

2. Reversible Adiabatic Expansion from Hot to Cold

In an adiabatic expansion we have dq = 0 and so by the First Law of Thermodynamics we have dU = dw

and we can compute the work done by the engine as

wout = −win = −
∫ Tf

Ti

CV dT = −CV (Tc − Th) = CV (Th − Tc)

Notice that we assume there is no dependence on temperature for the heat capacity because the Carnot

cycle is interested in ideal gasses.

3. Reversible Isothermal Compression from Cold to Cold

Similar to above, we can compute the work performed by the engine on the surroundings in an isothermal

expansion as

wout = −win =

∫
PdV = −

∫ Vf

Vi

nRTc
V

dV = −nRTc ln

(
Vf
Vi

)
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Morevoer, since this is an isothermal process we have that ∆U = 0 and so qin = wout.

4. Reversible Adiabatic Compression from Cold to Hot

Again, a pretty straightforward calculation considering we did it a second ago

wout = −
∫
dU = −

∫ Tf

Ti

CV dT = −CV (Tc − Th) = CV (Th − Tc)

Make sure to remember that for any adiabatic process, dq = 0.

We can now summarize our results in the following table, using the preceding diagram as reference points

for the processes as well as the initial and final volumes for each process:

Figure 3.1: The Carnot Cycle. The shaded region represents the total work done on the surroundings during
the transformation

Heat and Work for each Process of the Carnot Cycle

Process Heat Flow into Engine Work Done by Engine

Isothermal Expansion q1 = qin = nRTh ln
(
VB
VA

)
nRTh ln

(
VB
VA

)

Adiabatic Expansion 0 CV (Tc − Th)

Isothermal Compression q3 = −qout = nRTc ln
(
VD
VC

)
nRTc ln

(
VD
VC

)

Adiabatic Compression 0 CV (Th − Tc)

Recall our expression for the efficiency of a heat engine, Equation (3.4.1). Using this, we can express qout

and qin in terms of the quantities above, i.e., the initial and final temperatures and volumes:

ε = 1− −nRTc ln(VD/VC)

nRTh ln(VB/VA)
= 1− nRTc ln(VC/VD)

nRTh ln(VB/VA)
(3.4.2)

In order to simplify this expression recall that for adiabatic processes, PV γ = constant and so

PBV
γ
B = PCV

γ
C

nRTh
VB

V γB =
nRTc
VC

V γC

ThV
γ−1
B = TcV

γ−1
C

Th
Tc

=

(
VC
VB

)γ−1
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for the isothermal compression of the gas, and

PDV
γ
D = PAV

γ
A

nRTc
VD

V γD =
nRTh
VA

V γA

TcV
γ−1
D = ThV

γ−1
A

Th
Tc

=

(
VD
VA

)γ−1

which implies that

(
VD
VA

)γ−1

=

(
VC
VB

)γ−1

VB
VA

=
VC
VD

Consequently, we can substitute into Equation (3.4.2) to afford

ε = 1− nRTc ln(VB/VA)

nRTh ln(VB/VA)
= 1− Tc

Th
(3.4.3)

Eureka! This short equation implies that the primary constraint on an engine’s efficiency is how cold the cold

reservoir is. Moreover, the only point at which an engine could be 100% efficient is at absolute zero.

Another way of looking at the maximum work output of a Carnot engine is to consider the processes

which do the work, that is, the isotherms. Ideally, the isothermal expansion is at a high temperature, thereby

maximizing the area under the curve in the PV diagram. Additionally we would want the adiabatic expansion

to reach the largest volume possible, thereby increasing the area under the curve in the PV diagram again.

A large as possible volume increase during the adiabatic expansion also minimizes the area under the curve

during the isothermal compression, which decreases the area under the curve in the PV diagram but since it

is a compression this would be favorable. The below diagram illustrates these “optimized” transformations.

The following table summarizes everything we would ever really need to know about the Carnot cycle.

Make sure to note the use of qin and wout for the engine instead of the typical q and w used to represent the

heat absorbed by and work done on the system, respectively.

Heat, Work, and ∆U for the Reversible Carnot Cycle

Segment Initial State Final State qin wout ∆U

A→ B PA, VA, Thot PB , VB , Thot qin,AB > 0 wout,AB > 0 0

B → C PB , VB , Thot PC , VC , Tcold 0 wout,BC > 0 wout

C → D PC , VC , Tcold PD, VD, Tcold qin,CD < 0 wout,CD < 0 0

D → A PD, VD, Tcold PA, VA, Thot 0 wout,DA < 0 wout

Cycle PA, VA, Thot PA, VA, Thot
∑
qin

∑
wout 0

Ultimately, the reversible Carnot engine acts as an upper limit on efficiency, as stated in the “Carnot

Theorem”:

No heat engine operating between two temperatures can be more efficient than a reversible Carnot

engine operating between the same two temperatures.
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Expressing the Carnot Theorem in terms of efficiencies,

εrev > εirr

1− Trev
Th

> 1− qout,irr
qin,irr

Trev
Th

<
qout,irr
qin,irr

(3.4.4)

The subscripts rev and irr refer to reversible and irreversible cycles, respectively. Note that the left-hand side

of the inequality can be used because the temperature of a reversible Carnot engine is well defined throughout

the cycle. Although this is not the case for irreversible cycles, the heat flow is still well defined and can be used

on the right-hand side of the inequality. Rearranging Equation (3.4.4) gives

qin,irr
Th

− qout,irr
Tc

< 0

where qout = −qin for the Carnot engine. Then, if we use this idealized limit of qout = −qin, we have

qin,irr
Th

+
qin,irr
Tc

≤ 0

for an irreversible process. In approximating an irreversible heat engine, we can use a collection of reversible

Carnot cycles so that the above inequality can be rewritten as

n∑

i=1

qi
Ti

< 0

and in the limit as n→∞, ∮

irr

dqirr
T

< 0 (3.4.5)

Here, it is worth remembering that dqirr represents the heat absorbed by the engine. Since this quantity is

less than zero we observe that for an irreversible heat engine, some of the heat must be lost and therefore not

all of it can be converted to work (which agrees with everything we’ve said up until this point).

Regardless of whether or not the cycle is reversible, if the engine is returned to its original state then all

of the state functions must remain unchanged (i.e., ∆S = 0).

How can we relate the macroscopic, idealized example of the Carnot engine back to a microscopic model?

Well, we already know that heat and work are both ways to change the internal energy of a gas. In contrast to

heat, work can be thought of as organized energy, e.g., for a gas to do work on a piston the molecules must all

move in the same direction (against the piston). On the other hand, heat is much more like random energy, that

is, there is no requirement for what direction the molecules must move or behave in order to absorb heat. All

that is required when heat is absorbed is for the kinetic energy of the particles to increase (for idealized gasses,

all of the internal energy is in the form of kinetic energy). Hence, there are fewer arrangements of particles in

a gas that “look” like work, thereby favoring heat.

Let’s return to the Carnot cycle. Notice that if we sum q across all of the processes in the cycle,
∑
q 6= 0

(this makes sense because heat is not a state function). However, recall from above that

VB
VA

=
VC
VD

Using a little bit of algebraic gymnastics we can rewrite this as

ln

(
VB
VA

)
= − ln

(
VD
VC

)
(3.4.6)
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Figure 3.2: In the first isothermal expansion step, the initial hot temperature is maximized and in the succeeding
adiabatic expansion the final volume reached is also maximized. Both of these conditions maximize the area
under the curve, thereby maximizing the work done by the engine on the surroundings.

and take the sum of the heat across the entire cycle to afford the following result:

qin + qout = nRTh ln

(
VB
VA

)
+ nRTc ln

(
VD
VC

)

= nRTh ln

(
VB
VA

)
− nRTc ln

(
VB
VA

)

=
(
Th − Tc

)
nR ln

(
VB
VA

)

Thus, we see that if we define a new quantity q/T it would be zero over the entire cycle. In other words, the

quantity q/T acts like a state function2. Thus,

∮
dqrev
T

= 0 (3.4.7)

which implies that dqrev/T acts like an exact differential. We refer to this state function as the entropy,

dS =
dqrev
T

(3.4.8)

This is another way of coming across an expression for the entropy as its defined in Sections ?? and ??

2It’s important to note that this result holds only if the cycle is reversible. Had any step been irreversible we cannot define this
state function. Recall that qrev > qirrev .
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CHEMICAL POTENTIAL

Chemical potential.

- Scientist

In developing a robust analysis of thermodynamic systems we need to begin to consider the concentra-

tions of different chemical components involved in a reaction. In particular, elucidating the thermodynamic

contributions from each species, that is, how chemical i effects the enthalpy, entropy, and Gibbs free energy

change of a reaction, for example. This foundational approach will offer a basis for analyzing simple reactions

and phase transitions, as well as additional Maxwell relations that offer a framework for energetic coupling.

Firstly, we’ll consider the idea of partial molar quantities, an approach to separating thermodynamic

contributions from each species that does not require detailed structural knowledge of the chemical species or

their modes of interaction. Next, the idea of a chemical potential will be developed as a means of predicting

the phase of a species which will prevail at equilibrium for different thermodynamic systems. The chemical

potential will be applied to systems with phase transitions and chemical reactions and ultimately afford the

foundation for which we can analyze phase transitions using the Clausius-Clapeyron equation.

4.1 Partial Molar Quantities

A partial molar quantity is the amount of a particular extensive thermodynamic quantity contributed per

mole of a substance. Such a quantity is represented as X̃i where the bar refers to “per mole” and the subscript

i denotes the particular species in question.

An important distinction that’s made when converting to partial molar quantities is that whereas Xi is

extensive, X̃i is intensive. Intensive properties of a system typically provide a more fundamental description of

a thermodynamic system than do their extensive counterparts (for example, consider the enthalpy of a reaction

versus the molar enthalpy. Clearly, one is more illustrative of the chemistry going on than the other).

We’ll begin our analysis of partial molar quantities by considering the partial molar volume(s) of a system

because it closely parallels the behavior and intuition behind the partial molar Gibbs energy, a measurement

that will be of immense use to us.

34
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4.1.1 Partial Molar Volume

The partial molar volume of a system is defined as

Ṽi =
Vi
ni

(4.1.1)

where ni is the number of moles of chemical i and Vi is the volume assumed by the same chemical. For single-

species systems, this equation simplifies as Ṽ ∗i = V/ni where Ṽ ∗i is used to denote the fact that the system is

composed of only one species (we’ll be interested in single-species systems for the majority of this beginning

part). Rearranging Equation (4.1.1) affords

V = Ṽ ∗i ni

This simple rearrangement better illustrates the fact that Ṽ acts as a proportionality constant, relating how

the volume contributed by a particular species in a reaction changes with the number of moles of the species.

In particular, if we consider incredibly small incremental changes in ni we see that the partial molar volume is

in fact a partial derivative:

Ṽi =

(
∂Vi
∂ni

)

P,T,ni6=j

(4.1.2)

The subscripts of the partial derivative indicate that pressure and temperature are being held constant, in

addition to the number of moles of the other species involved in the reaction. Finally, we see that the total

volume differential can be expressed in the following form for a chemical reaction with a single species:

dV = Ṽ ∗i ni =

(
∂V

∂ni

)
dni (4.1.3)

Now we’ll move on to multiple component systems. Consider a 1:1 mixture of water and ethanol so that

the mole fractions are xH2O = xEtOH = 0.5. In mixing 50 mL of water with 50 mL of ethanol, we afford

a mixed solution totaling 97 mL, in contrast to the case using just pure water. I don’t yet know why this

happens, it’s known as “mixing volume ideality”, but I’m dying to find a physical explanation. Nevertheless,

this discrepancy reflects the dependence of partial molar volumes on composition. In fact, we can represent the

total molar volume of an ideal solution (for two components water and ethanol, this case) as

Ṽ = xH2OṼ
∗
H2O + xEtOHṼ

∗
EtOH (4.1.4)

The use of the star in this equation illustrates the fact that in order for this equality to hold we assume ideality.

In fact, multiplying this equation by the total number of moles in solution affords the sensible result,

V = nH2OṼH2O + nEtOHṼEtOH (4.1.5)

Unsurprisingly, this equation generalizes to any number of species with ease. More generally, we can also

express the total partial derivative of the volume of this sort of solution as

dV =

(
∂V

∂nA

)

nB

dnA +

(
∂V

∂nB

)

nA

dnB (4.1.6)

which generalizes similarly.
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4.1.2 Partial Molar Gibbs Energy

The partial molar Gibbs free energy is defined exactly as we’d expect. Because of its importance, however,

its given the special denomination of “chemical potential”:

µi =

(
∂G

∂ni

)

ni6=j

(4.1.7)

The chemical potential can be thought of as an analogue to potentials in physics, such as the electric

potential or gravitational potential; particles of a substance tend to move from high chemical potential to

low potential. The chemical potential has applications in a nearly inappropriate amount of disciplines. An

understanding in everything from chromatography to electrochemistry1 benefits from having a foundational

understanding of the chemical potential. Something I recently just learned about are theoretical plates, the

hypothetical stage in a chromatographic process in which the liquid and vapor phases of a substance are in

equilibrium. The performance of a separation process such as chromatography depends on having a series of

these theoretical plates. Alright that was only a small tangent back to the things that we’ll be tested on at one

point.

Before diving into a derivation and analysis of the relationships between some thermodynamic quanti-

ties and the chemical potential, it would behoove us not to mention the close (and ideally helpful) analogies

between the chemical potential, temperature, and pressure, three intensive variables which may determine the

equilibrium of a system:

1. Temperature determines equilibrium with respect to heat flow. Heat flows from higher temperatures

to lower ones (a restatement of the second law). When flow stops, equilibrium is attained and the

temperature is uniform.

2. Pressure determines the equilibrium of a system with respect to volume change. When a higher-pressure

part of the system expands at the expense of one at a lower pressure, this can be considered a “flow”

of volume from low pressure to high pressure. When flow stops, equilibrium is attained and pressure is

uniform2.

3. Chemical potential determines the equilibrium with respect to the flow of matter. Each species of matter

flows from high chemical potential to low chemical potential. When the flow stops, equilibrium is attained

and the chemical potential of each species is uniform.

If variations in temperature and pressure are considered alongside variations in the number of moles of

each species, the chemical potentials combine nicely to afford the total partial differential of Gibbs free energy

as

dG = V dP − SdT +
∑

i=1

µidni (4.1.8)

where the summation on the right iterates through every chemical species involved in the reaction. This

variation equation offers a number of additional Maxwell relations. Moreover, this new equation for the Gibbs

free energy will be paramount for systems with phase transitions, chemical reactions, or that are open and can

exchange matter with the surroundings (all of these types of transformations can lead to changes in n).

This affords a new expression for the total partial differential of dG:

dG =

(
∂G

∂T

)

P,ni,nj

dT +

(
∂G

∂P

)

T,ni,nj

dP +

(
∂G

∂ni

)

T,P,ni

dni +

(
∂G

∂nj

)

T,P,nj

dnj (4.1.9)

Note that we’ve already named all of these quantities:

dG = −SdT + V dP + µidni + µjdnj (4.1.10)

1Depending on how much chemistry you’re familiar with that may or may not be a large breadth of knowledge.
2This realization of the pressure for a system must be modified if such effects as gravity are significant.
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Hold on a minute! Above we just defined the molar Gibbs free energy as the sum of the chemical potential

so it can be expressed as

G̃ = µi + µj ⇔ G = niµi + njµj (4.1.11)

which means we should also be able to express the differential Gibbs free energy as

dG = dµini + µidni + dµjnj + µjdnj (4.1.12)

At this point, we’re left with two equations expressing the same quantity:

dG = −SdT + V dP + µidni + µjdnj

dG = dµini + µidni + dµjnj + µjdnj

Putting these together affords the following relationship:

dµini + dµjnj = SdT + V dP

We can generalize this equation to any number of chemical species nicely, affording what’s known as the

Gibbs-Duhem equation:
n∑

i=1

nidµi = −SdT + V dP (4.1.13)

Essentially, this equation is telling us that the chemical potentials for each species in a reaction are dependent

on one another. For a single species this equation simplifies as

ndµ = −SdT + V dP ⇔ dµ = −S̃dT + Ṽ dP

Up until this point we’ve talked all about Gibbs free energy. How might chemical potential be expressed

in terms of other state functions such as the Helmholtz free energy of a system or the internal energy? (An

excellent question, might I add). Well, let’s consider the Helmholtz free energy as an example: We can express

the Helmholtz free energy as

A = U − TS +
n∑

i=1

µini

for a reaction with n chemical species present. Then, the total partial differential of A can be computed as

dA = PdV − SdT +

n∑

i=1

µidni

recalling the derivation for the total partial differential of the Helmholtz free energy from Section ?? and

adding in the term(s) for the influence of the chemical potential. Using the same equation for the total partial

differential of the Helmholtz energy, we see that

µi =

(
∂A

∂ni

)

T,V ni6=j

(4.1.14)

Hopefully it’s clear that a similar relationship will appear for the internal energy of a system as well as

the enthalpy. I’ll leave those derivations to you because I don’t wanna do it. Here they all are:

µi =

(
∂G

∂ni

)

P,T,ni6=j

=

(
∂A

∂ni

)

T,V,ni6=j

=

(
∂H

∂ni

)

T,V,ni6=j

=

(
∂U

∂ni

)

S,V,ni6=j

One important aspect of these relationships is that the partial derivatives are all taken while the respective
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natural variables are held constant.

Let’s keep in mind the intuition behind defining a chemical potential in the first place: The notion of

µ helps us predict the spontaneity of a process that involves adding or taking away molecular components of

a transformation. This includes both chemical transformations where multiple species are present and phase

transitions where only a single chemical is present but in different phases. This statement begs an important

question: How do we define a phase? Typically we define three phases of matter, solid, liquid, and gas. However,

phases and phase transitions encompass a much broader range of physical phenomena. A quick example might

be magnetism, the uniform orientation of electron spins within a material. Another example might be the

mesophase of a substance, a state of matter in between a liquid and a solid. Some examples of mesophases

include the lipid bilayers of cell membranes and gelatin. In the next section we’ll take a more rigorous approach

to defining the properties of a thermodynamic phase.

One thing that sometimes peeves me in this class is the lack of formalized math and statistics that’s

applied to some of these complicated systems. Old whites dudes have been grinding for years to provide

rigorous definitions for everything we’ve talked about and will talk about, but for the sake of “simplicity”

they’re just ignored for the most part. That’s my short preface into trying to reintroduce the use of partial

derivatives for important thermodynamic relationships.

Recall that through the use of the total partial differential for Gibbs free energy we have the relationship

−S =

(
∂G

∂T

)

P,ni6=j

so that we can rewrite our definition for the Gibbs free energy as

G = H + T

(
∂G

∂T

)

P,ni6=j

Differentiating with respect to an infinitesimal change in amount of substance i, we have that

(
∂G

∂ni

)

P,ni6=j

=

(
∂H

∂ni

)

P,ni6=j

+ T

(
∂2G

∂ni∂T

)

P,ni6=j

(4.1.15)

As a result of Clairaut’s theorem we can change the order of differentiation to afford an equivalent expression

for the right-most partial derivative in the expression above,

(
∂2G

∂ni∂T

)

P,ni6=j

=

(
∂2G

∂T∂ni

)

P,ni6=j

=

(
∂µi
∂T

)

P,ni6=j

ultimately lending itself to the expression

µi = hi + T

(
∂µi
∂T

)

P,ni6=j

(4.1.16)

where hi is the partial molar enthalpy. This equation for the chemical potential will prove useful later when

we consider ideal mixtures.

4.1.3 Consequences of an Ideal Solution

Just as the treatment of gasses can be simplified by starting with an idealized kind of gas, so can mixtures

be simplified. However, this range of usefulness will prove much more restricted than the tried-and-true PV =

nRT .

There are several equivalent ways of defining an ideal mixture. A common analytical definition is given

by

µi = µ∗i +RT lnxi (4.1.17)
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where µ∗i is the chemical potential of the pure liquid and xi is the mole fraction of the compound in solution.

As we’ll come to realize, this equation affords an easy way of showing why the enthalpy of mixing for an ideal

solution is necessarily zero (that time of realization is now, by the way). By the chain rule, we have that

∂(µi/T )

∂T
=
T ∂µi
∂T − µi ∂T∂T
T 2

= − 1

T

∂µi
∂T
− µi
T 2

so that we can make the substitution

−T 2 ∂(µi/T )

∂T
= −T ∂µi

∂T
+ µi

into Equation (4.1.16) to afford the following relationship:

hi = −T 2

(
∂(µi/T )

∂T

)

P,ni6=j

(4.1.18)

To prove the utility of our expression for the partial molar enthalpy above, we’ll first rewrite Equation (4.1.17)

by dividing through by temperature,
µi
T

=
µ∗i
T

+R lnxi (4.1.19)

and differentiating this equation with respect to temperature (following the same logic using the chain rule a

moment ago), followed by multiplying through by −T 2, we find that

hi = h∗i (4.1.20)

That is to say, the change in enthalpy of mixing for an ideal solution is zero.

Using Equation (4.1.17) as a template, we could also define the chemical potential of a pure vapor as

µi = µ◦i +RT ln

(
Pi
P ◦

)
(4.1.21)

where the fraction Pi/P can be thought of as a “pressure fraction,” analogous to mole fractions in the case of

the solution3. If the vapor is in equilibrium with its solution, the chemical potential of species i in either phase

must be the same, so that

µ∗i = µ◦i +RT ln

(
P ∗i
P ◦

)

Taking the difference between this equation and Equation (4.1.21), we find

µi − µ∗i = µ◦i +RT ln

(
Pi
P ◦

)
−
[
µ◦i +RT ln

(
P ∗i
P ◦

)]

= RT ln

(
Pi
P ∗

)

= RT lnxi

from which we see that Pi = xiP
∗
i also known as Raoult’s law.

4.1.4 Consequences of a Nonideal Solution

Solutions that behave truly ideal are few and far between and the relatively simple relationships derived in the

preceding section are not nearly as applicable as we may like. Just as in the case of the nonideal gas, however,

3A more common expression for µi of an ideal vapor defines the quantity of terms of fugacity, a property of a real gas which,
when substituted for the partial pressure Pi of an ideal gas, gives equations applicable to a real gas. The fugacity is related to the
real pressure of the gas through the relationship f = ϕP , where ϕ is the fugacity coefficient.
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using these equations as a template for defining relationships between the real quantities of a substance will

prove beneficial. For a solution, we introduce the activity, ai, that satisfies

µi = µ◦i +RT ln ai (4.1.22)

for each chemical in a solution. In order to define the standard chemical potential for a solution we’ll need

to first specify which substance will assume the role of our solvent. Then, µ◦i is the chemical potential of the

pure solvent. For the other chemicals in solution, the reference state is defined such that [i] = 0 M, i.e., the

concentration is zero4. Then, the standard chemical potential is such that

lim
xi→1

ai
xi

= 1 (4.1.23)

The ratio ai/xi is the activity coefficient, symbolized by γi.

4.2 Phases and Phase Transitions

Finally we’ll determine the major incentive for defining the chemical potential: At equilibrium, the phase of a

substance with the lower chemical potential prevails.

Familiar phases typically differ in the type and quantity of non-covalent interactions between molecules;

Van der Walls forces and induced dipoles are good examples of these. Gasses often have the fewest intermolecular

interactions, then liquids, then solids. Compared to gasses, liquids and solids have vastly more intermolecular

interactions, however, the molecules in a liquid are isotropically (randomly) oriented so that there is no long-

range order. Solids on the other hand do have long-range order, i.e., crystallinity.

Not all phases are distinguished by non-covalent interactions, though. Some differ in their covalent

bonding pattern. For example take C(s). Carbon can exist as graphene, an sp2 hybridized form which exhibits

aromaticity, and diamond, an sp3 hybridized form which forms a strong covalent network where each carbon is

bound to four other carbons.

Usually we can distinguish between which phase of a substance is favored at or around standard conditions.

At room temperature water will be liquid and we can freeze or it boil it by dropping it below 0◦C or brining

it above 100◦C, respectively. However, which phase of water will be favored at 75◦C and 15 atm? Here we can

invoke the chemical potential.

Let α and β represent different phases of a component (for example, the liquid and vapor phases of water).

We can write down a change in Gibbs free energy in response to the change in the number of moles of each

phase:

dG = µαdnα + µβdnβ

By the conservation of matter it must be the case that dnα = −dnβ so that we can rewrite this as

dG = (µα − µβ)dnα

The above expression makes the following claim clear: Under conditions where µα < µβ , at equilibrium the

system will consist entirely of the α phase because the partial molar Gibbs free energy with respect to the α

phase will be negative, indicating the direction of the reaction which minimizes G.

In contrast, the point where µα = µβ , i.e., dG = 0, the equilibrium condition is maintained regardless of

the change in moles of phase α and so both phases can exist in equilibrium. We call this point phase coexistence.

Another way of thinking about phase coexistence is that the material can change reversibly between phases.

Thus, we’re left with the result that if we can compute the chemical potential of different phases at any

condition we will know which phase prevails at that condition (at equilibrium). So, let’s try and do that

4This condition is sometimes also referred to as the state of infinite dilution.
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Starting from Equation (4.1.11) for a single species we have that

µα = G̃α = H̃α − T S̃α (4.2.1)

for some phase α. As a minor aside, notice that this equation explains the two familiar phase changes of water.

Consider the differential chemical potential:

dµα = dG̃α = −S̃αdT + Ṽ αdP (4.2.2)

As the temperature of the sample increases, the Gibbs free energy will decrease (because of the negative sign

associated with that term) and so the phase with a greater entropy will be favored (explaining the transition

from solid to liquid to gas as temperature increases). Returning to Equation (4.2.1), our goal now is to try and

express µα in terms of manipulable thermodynamic properties, e.g. temperature and pressure.

Recall that our key expressions for enthalpy and entropy in terms of pressure and temperature are in

terms of the heat capacity,

dH = CP dT ⇔ H(T ) =

∫ Tf

T0

CP (T )dT +Hr

dS =
CP
T
dT ⇔ S(T ) =

∫ Tf

T0

CP (T )

T
dT + Sr

(4.2.3)

where Hr and Sr are reference states for the enthalpy and entropy, respectively. With these expression we can

evaluate the enthalpy and entropy changes over a temperature range with no phase change. During a phase

change, however, none of the heat goes into changing the temperature of a substance and therefore the heat

capacity is no good. Hence, we need a new quantity to define the energy change associated with phase change.

This new quantity is the enthalpy of melting/vaporization/fusion etc.,, denoted ∆H̃m. Intuitively, the

enthalpy of vaporization represents the heat being put into breaking up intermolecular reactions (thereby

increasing potential energy) as opposed to speeding up molecules (which would have increased the kinetic

energy of a sample). The entropy of melting/vaporization/fusion etc., is defined how we might expect, as

∆S̃m = ∆H̃m/Tm where Tm represents the temperature at which the phase change occurs.

The last thing we need to define the chemical potential of a phase at a particular thermodynamic state is

reference states for enthalpy and entropy, to define an absolute scale (recall from Equations (4.2.3) that when

integrating we are left with reference enthalpies and entropies).

For enthalpy, this is an intrinsically arbitrary question: Which energy are we counting? We could be

referencing the bond enthalpies of a compound, the energies of the intermolecular interactions between molecules

of a compound, or even the electronic energy associated with the energies of electrons. Hence, we define the

arbitrary reference point of 0 (enthalpy units, I suppose) to quantify the partial molar enthalpy of a phase

transition as follows:

H̃(T ) = 0 +

∫ Tm

0

C̃P (T )dT + ∆H̃m +

∫ Tv

Tm

C̃P (T )dT + ∆H̃v +

∫ Tf

Tv

C̃P (T )dT (4.2.4)

In contrast to enthalpy we do in fact have the ability to create an absolute reference point for the entropy.

Because of its microscopic definition, S = kB lnW , at absolute zero a substance will have only one microstate5,

that is, a perfectly crystalline structure. Hence, W = 1 and therefore S = 0. This is known as the third law of

thermodynamics. Now, we can define the partial molar entropy for a phase transition absolutely:

S̃(T ) = 0 +

∫ Tm

0

C̃P (T )

T
dT + ∆S̃m +

∫ Tv

Tm

C̃P (T )

T
dT + ∆S̃v +

∫ Tf

Tv

C̃P (T )

T
dT (4.2.5)

5At absolute zero the number of degenerate ground states for a substance is incredibly small such that the residual entropy can
be safely approximated as 0.
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Ultimately, these equations will help us to do is derive a pressure-dependence for the chemical potential.

Recall Equation (4.2.2), relating the change in chemical potential of a phase to the natural variables of

the Gibbs free energy,

dµα = −S̃αdT + Ṽ αdP (4.2.6)

As discussed previously, the temperature dependence of this equation makes sense; as temperature increases the

phase which maximizes entropy will be favored. What about the pressure dependence on the thermodynamic

favorability of a phase? Funny you should ask because that’s what I was just about to talk about.

As we can see from the Equation (4.2.6), phases with large molar volumes will have chemical potentials

which vary (potentially significantly) with pressure. For all intents and purposes, the chemical potential of the

condensed phases don’t vary significantly with the pressure6 and so we’ll only consider the pressure-dependence

of the chemical potential on the gaseous state. Suppose we consider a constant-temperature gas phase α with

chemical potential given by

dµα = Ṽ dP =
RT

P
dP

where we estimate the gas to be ideal and the n term drops out because the chemical potential is a molar

quantity (by definition). Proceeding with integration:

∫ P

Pr

dµα = RT

∫ P

Pr

dP

P

µα(P )− µα(Pr) = RT ln

(
P

Pr

)

µα(P ) = RT ln

(
P

Pr

)
+ µα(Pr) (4.2.7)

In the lecture slides Dr. Fried likes to use units of atm to simplify the logarithm in the final line. I will not

do that. I refuse to be a slave to atm.

Now we’re left with an expression for the chemical potential as a function of the pressure and temperature

of the sample. Notice that µα(Pr) is a function of only temperature so that we can express it in terms of the

enthalpy and entropy of the sample, with them as functions of temperature as well. Then, starting from

Equation (4.2.7),7

µα(P, T ) = RT ln

(
P

Pr

)
+ µα(T ;Pr)

= RT ln

(
P

Pr

)
+ H̃α(T ;Pr)− T S̃α(T ;Pr)

= RT ln

(
P

Pr

)
+ H̃α

v (;Tv, Pr) + C̃αP (T − Tv)− T
(
S̃α(;Tv, Pr) + C̃αP ln(T/Tv)

)

= H̃α
v (;Tv, Pr)− T S̃α(;Tv, Pr)− C̃αPTv − T

(
R ln

(
P/Pr

)
− C̃αP + C̃αP ln(T/Tv)

)

= µα(;Tv, Pr)− C̃αPTv − T
(
R ln

(
P/Pr

)
− C̃αP (1− ln(T/Tv)

)

In the second line above I utilized Equations (4.2.4) and (4.2.5) to rewrite the enthalpies and entropies as they

varied with temperature as the sum of reference enthalpies and entropies and their respective changes over a

temperature range according to their dependence on the heat capacity. I colored them to try and make it more

clear what was being substituted and moved around because I feel like the derivation provided in the slides

does a poor job of this. Also in the last line I substituted

µα(;Tv, Pr) = H̃α
v (;Tv, Pr)− T S̃α(;Tv, Pr)

6At extreme pressures (we’re talking on the order of gigapascals) solids undergo interesting pressure-dependent phase transitions.
I think Dr. McQueen’s lab might deal with pressures great enough to observe this.

7In the following expressions I’ve adopted the notation T (x; y) where T is a variable which varies with x with some constant
parameter y.
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by definition of the chemical potential for a phase.

At this point, I’m gonna stop doing math. We could try and simplify this further, however, we’ve reached

a point where we can already draw some meaningful conclusions. Notice that everything on the right-hand

side of the equation varies only with pressure for a fixed temperature. So, doing a tiny bit of analysis we find

that the chemical potential of the gaseous state increases as the pressure of the gas pressure increases so that

the gaseous state becomes less thermodynamically favorable. I know, it was an annoying set of mathematical

manipulations to get to an arguably underwhelming result. I agree.

So we’ve derived some sort of pressure dependence of the chemical potential for a sample and now we’re

left to determine how the pressure dependence changes with temperature and vice versa. Recall from looking at

thermodynamic potentials that we utilized PV diagrams to visualize the properties of a thermodynamic system.

Here, we’ll follow a similar procedure to visualize phase changes, instead utilizing a PT diagram. Below is the

PT diagram of water. There a few labeled points: The triple point are the pressure and temperature conditions

at which all three phases of matter exist in equilibrium. The critical point is the minimum pressure and

temperature at which a substance can be distinguished between a gas and a liquid. In other words, beyond the

critical point a substance can no longer be distinguished between the liquid and gas phases. Additionally, the

triple point pressure corresponds to the minimum pressure at which the liquid phase of a substance can exist

and the triple point temperature is typically the minimum temperature at which the liquid phase can exist8.

Figure 4.1: Phase diagram of water

Another major part of a phase diagram are the coexistence curves, the lines of the diagram on which

neighboring phases can exist in equilibrium. The slopes of the coexistence curves are given by the Clausius-

Clapeyron equation.

4.3 The Clausius-Clapeyron Equation

Although it’s usually applied to liquid-vapor equilibrium, the Clausius-Clapeyron equation can be applied to

a wide variety of circumstances: The conditions for validity are (1) it must involve equilibrium with respect to

change that can take place reversibly at a constant temperature and pressure and (2) the equilibrium pressure

must depend only on temperature.

As mentioned above, the slopes of the coexistence curves on a phase diagram are expressed by the

Clausius-Clapeyron equation. So, consider the equilibrium of two phases, an α and a β phase:

µα = µβ

Along a coexistence curve the chemical potential of a species will certainly change. Recall from the Gibbs-

Duhem Equation (4.1.13) that the chemical potentials of the species in a thermodynamic system exhibit some

dependence on the thermodynamic properties of that system. Hence, when the pressure and temperature of a

8One of the exceptions to this is water which has a coexistence curve between the gaseous and liquid phase with a negative
slope.
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sample change so will the chemical potentials. Along the coexistence curve, however, the change in potential

will remain the same so that dµα = dµβ and we can express

− S̃αdT + Ṽ αdP = −S̃βdT + Ṽ βdP (4.3.1)

by Gibbs-Duhem. A little bit of algebraic gymnastics gets us to the desired expression:

−S̃αdT + Ṽ αdP = −S̃βdT + Ṽ βdP

(Ṽ β − Ṽ α)dP = (S̃β − S̃α)dT

dP

dT
=

S̃β − S̃α
Ṽ β − Ṽ α

Which affords the Clausius-Clapeyron equation, defined as

(
dP

dT

)

α→β
=

∆S̃α→β

∆Ṽ α→β
(4.3.2)

where a substance is transitioning from the α to the β phase. Clearly, since the entropy and volume change of

a transition are not constant this slope will not be constant and we’d never expect the coexistence curve to be

necessarily linear.

For most substances, we expect that the phase with a higher molar entropy (S̃gas > S̃liquid > S̃solid) will

also have a higher molar volume (Ṽgas > Ṽliquid > S̃solid). Consequently, the slope of the coexistence curve is

positive for almost all substances9

4.3.1 The Clapeyron Equation

The Clapeyron equation aims to approximate the thermodynamics of the liquid to gas phase transition for a

substance. Beginning from Equation (4.3.2), we can approximate

(
dP

dT

)

α→β
=

∆S̃l→g

∆Ṽ l→g
=

∆S̃l→g

Ṽ g

since the molar volume of the gaseous state will be far greater than that of the liquid phase. By the ideal gas

law we can rewrite this as
∆S̃l→g

Ṽ g
=
P∆S̃l→g

RT

and we can express the Clausius-Clapeyron equation as

dP

P
=

(
∆S̃l→g

R

)
dT

T
=

(
∆H̃v

R

)
dT

T 2

where we took advantage of the fact that ∆S̃l→g = ∆H̃v/T . Integrating this expression affords

∫ P

Pr

dP

P
=

∆H̃v

R

∫ T

Tr

dT

T 2

ln

(
P

Pr

)
=
−∆H̃v

R

(
1

T
− 1

Tr

)
(4.3.3)

which is the Clapeyron equation.

The utility of the Clapeyron equation is in its ability to determine any point on a coexistence curve, given

we know at least one other point and the enthalpy of vaporization, ∆H̃v. But why the enthalpy of vaporization

9Water is an excellent example of a substance with a negative slope for the coexistence curve for the liquid and solid phases.
This is because the density of ice is less than the density of water, hence why ice floats on water! Ultimately this property is due
in part to the strong hydrogen bonding water exhibits.
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and not the enthalpy of fusion? Recall that the Clapeyron equation is an estimate for the liquid to gas phase

transition. Thus, we’re only interested in the enthalpy of vaporization.

Below is a birds-eye-view of what’s been covered on phases so far:

1. A phase of a substance refers to a uniform macroscopic state characterized by certain types of interactions

(enthalpy) and the substance’s level of order (entropy). As a consequence, it will also be characterized

by certain macroscopic properties (e.g., density, magnetism).

2. Phases can be characterized by an order parameter. Higher temperatures will favor the phase with lower

order (gasses are favored over liquids, for example). The lower order phase typically has a lower enthalpy

and higher entropy.

Now, here’s an example problem utilizing (most) of what we talked about: The normal boiling point of

benzene is 353.24 K and the vapor pressure of liquid benzene is 11.9 kPa at 298.15 K. The enthalpy of fusion

is 9.95 kJ/mol and the vapor pressure of solid benzene is 137 Pa at 228.85 K. Firstly, compute ∆H̃v.

Notice that we have the following (P, T ) pairs:

Phase P (kPa) T (K)

Liquid → Gas 101.325 353.24

Liquid 11.9 293.15

Solid 0.137 228.85

where the first coordinate was attained from the normal boiling point (normal implies atmospheric pressure),

the second was given for the liquid phase, and the third was given for the solid phase. Then, the enthalpy of

vaporization can be computed by the Clapeyron equation and the two (P, T ) coordinates in the liquid phase:

ln

(
101.325 kPa

11.9 kPa

)
=
−∆H̃v

R

(
1

353.24 K
− 1

293.15 K

)

∆H̃v = −R ln

(
101.325 kPa

11.9 kPa

)(
1

353.24 K
− 1

293.15 K

)−1

= 30.69 kJ/mol

Awesome!

Now compute ∆S̃v. This is far easier than above; all we have to do is divide the enthalpy of vaporization

by the temperature of vaporization (which is given):

∆S̃v =
∆H̃v

Tv
=

30.69 kJ/mol

353.24 K
= 86.88 J/K/mol

Amazing!

Lastly, find the triple point temperature and pressure for benzene. To compute the triple point we’ll need

to establish a system of 2 equations in 2 variables, those being the triple point temperature and triple point

pressure. The two equations we’ll use will consider as reference the points we’re given on the coexistence curves

and use the triple point parameters as the unknowns. The naive chemist may set this system up as follows:

ln

(
Ptp

11.9 kPa

)
= −30.69 kJ/mol

R

(
1

Ttp
− 1

293.15 K

)

ln

(
Ptp

0.137 kPa

)
= −9.95 kJ/mol

R

(
1

Ttp
− 1

228.85 K

)

Why is this incorrect? Recall that the Clapeyron equation is a model for transitions to the gaseous phase. Hence,

all of our equations should represent phase changes that evolve a gas. Notice that in the second equation which

utilizes the enthalpy of fusion is illustrative of a transition from the solid to liquid phase. Instead of using the
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enthalpy of fusion we need to find the enthalpy of sublimation which is representative of a phase transition

from the solid to gaseous state. Since enthalpy is a state function this can be computed with ease:

∆H̃sub = ∆H̃vap + ∆H̃fus = 40.64 kJ/mol

Then, our system becomes

ln

(
Ptp

11.9 kPa

)
= −30.69 kJ/mol

R

(
1

Ttp
− 1

293.15 K

)

ln

(
Ptp

0.137 kPa

)
= −40.64 kJ/mol

R

(
1

Ttp
− 1

228.85 K

)

which, following a little bit of algebraic gymnastics, affords the triple point temperature and pressures as

Ptp = 5.97 kPa and Ttp = 278 K.

4.4 Gibbs Rule of Phase

Gibbs rule of phase, or just the phase rule, is a general principle governing PV T systems, that is, systems

whose states are defined completely by pressure, volume, and temperature. The basis for this rule is that at

equilibrium, the number of phases present places a constraint on the intensive variables. More rigorously, since

the phases are in equilibrium with one another, the chemical potentials of the phases must be equal. Hence, a

restriction is placed on one of P , V , or T by the Gibbs-Duhem equation.

Let’s motivate a mathematical definition by working up from a 1-component system. For a system of

one phase, say, solid, assuming we do not allow for any phase transitions, we are free to vary any one of P or

T without affecting the identity of the solid. By introducing a second phase, say, liquid, we’ve restricted our

system to the coexistence curve between the solid and liquid phases so that if we choose to vary T , P must also

vary as to maintain the existence of both phases in equilibrium. Hence, we have one fewer degree of freedom.

Naturally, at the triple point for a substance there are 0 degrees of freedom since the triple point is exactly

that—a point. We could summarize the number of degrees of freedom F for this simple experiment as

F = 3− π

where π is the number of phases of the substance present.

We could generalize our results to a system of multiple components with relative ease to afford the Gibbs

rule of phase:

F = C − π + 2 (4.4.1)

where F is the number of degrees of freedom a system has, π is the number of phases present, and C is the

number of unique chemical species.10

10Materials scientists oftentimes deal with phase changes between solid structures and therefore imagine pressure as being
constant. This convention affords what is commonly referred to as the condensed phase rule, and is expressed as F = C − π + 1.
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CHEMICAL REACTIONS AND

EQUILIBRIUM

Chemical Reactions

- Scientist

Thermodynamics of mixing, connecting the macroscopic to the microscopic. Develop a theory of chemical

equilibrium using potentials. Define some stuff.

The topic of “chemical reactions” is certainly a broad one: Everything ranging from why your apple rots

when left out for too long to stars exploding in space can be considered a chemical reaction. Clearly, these two

things are vastly different. One is the tragic destruction of something beautiful, the other has like a 0.000001%

chance of affecting us cause stars are really far away. So, it’s important we define standard states for different

chemical processes1.

A standard state is an experimentally accessible reference state for a thermodynamic quantity. Standard

states are important because a multitude of thermodynamic quantities are easier to define relative to a standard

state rather than being defined absolutely (consider the idea of trying to defining an absolute state for enthalpy

as discussed in Section 4.2). We tackled this idea already a little bit with chemical potentials. Equation (4.2.7),

for example, defines the chemical potential as a function of pressure given some reference pressure. Using the

same equation as a motivating example, we can express the chemical potential for mixing two liquids together

as

µsolni = µ∗i +RT lnxi (5.0.1)

where µsolni is the chemical potential of species i in the mixture, µ∗i is the chemical potential of the pure liquid

i with a mol fraction of 1, and xi is the mole fraction of species i. We can express the potential for adding a

solute to a solution analogously,

µsolni = µ◦i +RT ln[i] (5.0.2)

where µ◦i is the chemical potential of a solution with species i having a concentration of 1 M, and [i] is the

concentration of species i.

1One might think about how the standard states for the oxidation of an apple and a supernova differ.

47
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5.1 The Thermodynamics of Mixing

As a simple model based off of the mixing discussed a moment ago, let’s suppose we have a container of N

lattice cells and we have Np particles of species p and Nq particles of species q such that Np + Nq = N . The

maximum number of microstates associated with this system is given by the multinomial coefficient

W =

(
N

Np, Nq

)
=

N !

Np!Nq!

and the minimum number of microstates would be 1, in the case where no mixing has occurred whatsoever.

We can compute the change in entropy of this system, going from unmixed to completely mixed, using the

Boltzmann equation:

∆Smix = kB

(
lnWf − lnWi

)

= kB ln

(
N !

Np!Nq!

)

= kB

(
N lnN −N − (Np lnNp −Np)− (Nq lnNq −Nq)

)

= kB

(
(Np +Nq) lnN −Np lnNp −Nq lnNq

)

= kB

[
Np ln

(
N

Np

)
+Nq ln

(
N

Nq

)]

= −kB(N)

[
Np
N

ln

(
Np
N

)
+
Nq
N

ln

(
Nq
N

)]

= −kBN(xp lnxp + xq ln xq) (5.1.1)

Which gives us an expression for the entropy of mixing in terms of the mole fraction of each species. Notice

that both xp and xq are less then zero, since they’re mole fractions, and so ∆Smix > 0 as expected. What’s

reassuring is that we could have derived an equivalent expression from a macroscopic description of the system

instead of a microscopic one:

∆Gmix = Gmixed −Gunmixed
= (npµp + nqµq)mixed − (npµp + nqµq)unmixed

= np(µ
∗
p +RT lnxp) + nq(µ

∗
q +RT lnxq)− (npµ

∗
p + nqµ

∗
q)

= npRT lnxp + nqRT lnxq

= nRT

(
np
n

lnxp +
nq
n

lnxq

)

= nRT (xp lnxp + xq lnxq) (5.1.2)

At this point, recall from Equation (2.4.4) that S = −(∂G/∂T )P which recovers the desired expression for the

entropy in Equation (5.1.1). In the second line of the derivation above we made use of the definition of Gibbs

free energy in terms of the chemical potential, Equation (4.1.7), and in the third line we utilized the reference

state definitions defined in this section, in particular Equation (5.0.1). Lastly, notice that our expressions for

∆Gmix and ∆Smix imply that ∆Hmix = 0. Does this result make any sense?

Yes! When mixing there is no bond breaking or forming going on. Hence, there is no enthalpy change

going on.
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5.2 The Thermodynamics of a Chemical Reaction

In the analysis of mixtures above, we treated all components in the system as unreactive and although unreactive

mixtures can exhibit interesting behaviors such as phase transitions, the complexity of a thermodynamic system

cannot be described without chemical reactions.

Recall from our study of phase transitions that we could compute the free energy of a phase transition

from the chemical potentials as G = nαµα + nβµβ . Significantly, this equation implies that the transition will

proceed to completion. That is, if we suppose µβ < µα at a particular set of conditions, zero moles of phase α

will exist at equilibrium because that would be the state which minimizes the free energy of the system. From

the perspective of mixing, the reason why phase transitions proceed to completion is because it involves no

unmixing. In contrast, the progression of a chemical reaction is associated with the breaking down and building

up of different reactants and products, respectively. So, a reaction which proceeds to completion is associated

with complete unmixing, which is clearly entropically unfavorable. Hopefully this point provides some intuition

behind why we study equilibrium in the first place. The distribution of products and reactants for a chemical

reaction in equilibrium gives us vital information about the thermodynamic favorabilities of each species and,

as we’ll see later, are crucial for calculating some of these thermodynamic quantities2.

To begin our discussion on chemical reactions let’s first establish some notation:

aA+ bB −−⇀↽−− gG+ hH

Here, A, B, G, and H are chemical species with respective reaction numbers a, b, g, and h. Additionally we’ll

define reaction coefficients νA, νB , νG, and νH as the reaction numbers for products and the opposite of the

reaction numbers for the reactants. So, for a reaction like 2H2 + O2 −−⇀↽−− 2 H2O,

νH2O = 2, νH2
= −2, νO2

= −1

This formalism allows us to describe a chemical reaction similar to a mathematical equation, using the reaction

coefficients suh that
n∑

i=1

νiIi = 0

where we sum over all species Ii in a reaction composed of n components.

Using the defined notation we’ll approach defining a reaction energy in two ways. Firstly, we’ll consider

the difference between the chemical potentials of the products and reactants to deduce the free energy of

reaction and secondly, we’ll evaluate the differential free energy change with respect to the moles of reaction.

5.2.1 Free Energy of Reaction from Finite Differences

Here we’ll consider a very direct approach of determining the free energy of a reaction, by representing it as

the difference between the free energy of the products and of the reactants. Each of these moles of reaction are

connected by the total number of moles involved in the reaction such that

ηi = νiηrxn (5.2.1)

2Here I’ll also mention the Curtin-Hammett principle, which concerns the distribution of products for a reaction as well, a
more particular set of conditions. I mention this principle mainly caused I learned about it recently and still don’t completely
understand.
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where νi is the reaction coefficient, defined above. This allows us to define the change in Gibbs free energy of

reaction as

∆Grxn = ηreactG̃react + ηprodG̃prod

= νAηrxnG̃A + νBηrxnG̃B + νGηrxnG̃G + νHηrxnG̃H

= ηrxn(νAµA + νBµB + νGµG + νHµH) (5.2.2)

and dividing both sides by the total number of moles involved in the reaction affords

∆G̃rxn = νAµA + νBµB + νGµG + νHµH (5.2.3)

Let’s stop for a moment and consider the result above. Since an initially prepared chemical system will continue

reacting spontaneously until reaching equilibrium we can deduce that ∆G̃rxn is the amount of molar free energy

evolved in this process. Naturally, this free energy change will depend on concentrations; if a system starts

near equilibrium not much free energy will be evolved whereas if it starts far away from equilibrium there will

a much more significant free energy change. Let’s try and determine this dependence on concentration.

Recall from Equation (5.0.2) that we can express the chemical potentials of each species in terms of

reference potentials and the concentration of the respective species. Hence, we can rewrite Equation (5.2.3) as

∆G̃rxn = νA(µ◦A +RT ln[A]) + νB(µ◦B +RT ln[B])

+ νG(µ◦G +RT ln[G]) + νH(µ◦H +RT ln[H])

= νAµ
◦
A + νBµ

◦
B + νGµ

◦
G + νHµ

◦
H +RT ln

(
[A]νA [B]νB [G]νG [H]νH

)
(5.2.4)

where the right-side terms are representative of the standard state and are independent of initial concentrations

whereas the left-side terms within the logarithm are entirely dependent on concentrations. Notice that if we

choose to evaluate ∆G̃rxn at the standard state so that ∆G̃rxn = ∆G̃◦rxn then by definition the right-most term

of Equation (5.2.4) must be zero.

In other words, the left-side terms of the equation express the amount of free energy released in a reaction

if the reaction commenced at standard state and the righ-side terms correct for the energy release in the event

that species do not start at their standard state concentrations.

Unless this is the first chemistry class you’ve ever taken, you’ll have seen the equation above already just

with some different variable names. Suppose we define

∆G̃◦rxn = νAµ
◦
A + νBµ

◦
B + νGµ

◦
G + νHµ

◦
H

as the amount of free energy released in a chemical reaction that is initially prepared at its standard state and

Q = [A]νA [B]νB [G]νG [H]νH =
[G]g[H]h

[A]a[B]b

as the reaction quotient. Then, we’re left with

∆G̃rxn = ∆G̃◦rxn +RT lnQ (5.2.5)

as the amount of free energy released in a chemical reaction that is prepared at some arbitrary conditions and

allowed to reach equilibrium.

The two unique terms in Equation (5.2.5) play very different roles in reaction thermodynamics and

therefore warrant additional discussion. The first term imparts a uniqueness to the reaction and determines

the specificity and cooperativity. Suppose we are developing a drug that must maintain a high affinity for a

molecular target. Then, it is ∆G̃◦rxn which must be optimized. Although the second term affects the standard



5.2. THE THERMODYNAMICS OF A CHEMICAL REACTION 51

Gibbs free energy change in response to product and reactant concentrations it does so in a predetermined way.

That is, once initial conditions are determined than Q is fixed. Now that we have an intuitive understanding

of this equation we’ll consider the how it might change at equilibrium conditions.

As mentioned previously, we know that a chemical reaction will proceed to equilibrium at which point no

more energy will be released and there is no more work the system can do on its surroundings3. In this case,

∆G̃rxn = 0 and so we can rewrite Equation (5.2.5) as

∆G̃◦rxn = −RT lnKeq (5.2.6)

where

Keq =
[G]geq[H]heq
[A]aeq[B]beq

(5.2.7)

is the equilibrium constant which denotes the relationship between reactant and product concentrations once

the equilibrium state is reached.

Here’s a example problem illustrating the utility of some of the equations we derived: The acid dissociation

constant, denoted Ka, is a measure of the distribution of free protons and conjugate base in solution for some

acid. Recall that the pKa of a molecule is an important measure of its acidity and is useful in comparing the

acidities of different organic compounds. The pKa of acetic acid is 4.76. Calculate the free energy change when

1 M acetic acid, initially placed in neutral water with 1 mM acetate, reaches equilibrium.

Equation (5.2.5) will be of great use to us here. First, we can compute the standard molar Gibbs free

energy change of reaction using Equation (5.2.6):

∆G̃◦rxn = −RT lnKa = −(8.3145)(298) ln(10−4.76) = 27.16 kJ/mol

Before we can compute the molar Gibbs free energy change of reaction we need the reaction quotient, Q.

Luckily we’re given everything we need to compute that as well,

Q =
[H+][A−]

[HA]
=

(10−7)(10−3)

1
= 10−10

and we can compute the molar Gibbs free energy change as,

∆G̃rxn = ∆G̃◦rxn +RT lnQ = 27.16 + (8.3145)(298) ln 10−10 = −29.89 kJ.mol

which is our final answer.

5.2.2 The van’t Hoff Equation

Recall from Equation (??) that, by definition, we can express the Gibbs free energy as ∆G = ∆H − T∆S so

that Equation (5.2.6) can be rewritten to afford

∆H̃◦rxn − T∆S̃◦rxn = −RT lnKeq

lnKeq =
−∆H̃◦rxn

R

(
1

T

)
+

∆S̃◦rxn
R

(5.2.8)

Equation (5.2.8) is known as the van’t Hoff equation and has exceptional utility because it allows us to disen-

tangle the enthalpic and entropic contributions of the free energy by measuring the temperature depdendence

of the equilibrium constant. There are a few key takeaways from this equation that are worth noting:

1. At very high temperatures, the entropic contribution dominates and at very low temperatures, the en-

thalpic contribution dominates.

3Recall that one definition of free energy is that it is the amount of work available the system has to do work on its surroundings.
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2. If a reaction has a large enthalpic contribution, we would expect it to have a high temperature-dependence.

3. For exothermic reactions, increasing the temperature will shift the equilibrium toward the reactants since

the right-hand side of the equation will become less positive and therefore lnKeq will become less positive

implying Keq has shrunk. This is the basis for le Châtelier’s principle.

As we know from, well... life... physical processes don’t typically proceed at discrete time increments.

That is, using a chemical transformation as an example, the species involved in a reaction are continuously

being transformed instead of reactants being spontaneously converted into products, waiting a sec, and then

being spontaneously converted again. Thus, the “finite differences” approach we took to determining the Gibbs

free energy change of reaction above may be an alarm for some concern. Although Q allows us to compute

∆G̃◦rxn at any set of reactant and product concentrations, Equation (5.2.5) is evaluated for a fixed set of these

conditions. However, we know from physical intuition that as a reaction proceeds, reactants will be converted to

products and therefore the concentrations of each species will be constantly changing. So what is the usefulness

of Equation (5.2.5)? If you’re a biochemist, fear not, since the “chemostatic” approach is actually quite common

in cells because reactant and product concentrations are controlled by a network of biochemical reactions.

However, if you’re like me and don’t care for cells, this reassurance is anything but reassuring. In the

next section we’ll consider an approach which accounts for these differential changes in reactant and product

concentrations.

5.2.3 Free Energy of Reaction from Differentials

In contrast to the method of finite differences, now we will consider a differential change in the chemical

potentials which results in a more mathematical yet hopefully less conceptually-exhausting method of deriving

the free energy change for a reaction. Recall Equation (4.1.12) that we can express the differential change in

molar Gibbs free energy as a sum of chemical potentials,

dG̃ =

n∑

i=1

µi

and using the reaction defined above in Section 5.2.1 we can express a differential change in Gibbs free energy

as

dG = µAdnA + µBdnB + µGdnG + µHdnH (5.2.9)

An advantage we gain when studying the free energy of reaction from a differential approach is that we

can concern ourselves with the total amount of reactant and product present (defined earlier as ηi for each

species i) as opposed to the total amount of species involved in the reaction (defined earlier as ηrxn) which

was necessary when handling the free energy of reaction from the perspective of finite differences. Hence, we

can define the extent of reaction4, denoted ξ, to describe how the number of moles of each species involved

in a reaction changes as the reaction progresses. Intuitively, value of ξ represents how much the reactant has

converted to product5.

Because the variations of reaction we’ll consider are infinitesimal, thereby leaving the chemical potential

of each species effectively unchanged, we can express a differential change in moles for each species as

dni = νidξ

where νi is the reaction coefficient as defined earlier. Substituting this result into Equation (5.2.9) affords an

expression for a differential change in Gibbs free energy:

dG = µAνAdξ + µBνBdξ + µGνGdξ + µHνHdξ

4ξ can sometimes also be referred to as the “reaction coordinate.”
5Relating this back to the finite differences approach, since we did not take into account any changes in reactant and product

concentrations we could think of our method in Section ?? as taking place at a fixed value of ξ.
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Notice that we can rewrite this expression as the differential equation

(
∂G

∂ξ

)

T,P

= µAνA + µBνB + µGνG + µHνH = ∆G̃rxn (5.2.10)

where the equality with ∆G̃rxn comes by definition (and also Equation (5.2.3)). Notice that we define the

partial derivative at a constant temperature and pressure because otherwise the chemical potentials of each

species would be changing. In this instance, we don’t want that.

The significance of Equation (5.2.10) is clear once we recall that the Gibbs free energy acts as an indi-

cator of spontaneity at a constant temperature and pressure. If we observe G increasing as ξ increases (i.e.,

(∂G/∂ξ)T,P > 0) then we’d expect the reaction to proceed in the direction that converts products back into

reactants, that is, we’d expect ξ to decrease. Thus, when plotted against the extent of a reaction, the total

Gibbs free energy serves as a reaction potential.

To illustrate some of these key principles, let’s consider a simple chemical reaction A −−⇀↽−− B with µ◦A
and µ◦B as the standard chemical potentials for A and B, respectively. Additionally, assume that there are nA

moles of A and nB moles of B such that nA + nB = n where n is the total number of moles present. Then,

the number of moles of reactant and product (nA and nB , respectively) can be expressed as nA = n(1− ξ) and

nB = nξ where the initial solution is composed of entirely species A. Lastly, suppose that the molar volume of

A is ṼA and that of B is ṼB and for the sake of simplicity assume that ṼA = ṼB = V . By Equations (4.1.12)

and (5.0.2) we can express the Gibbs free energy with our new notation as

G =

# species∑

i=1

µini = µAnA + µBnB

= (µ◦A +RT ln[A])nA + (µ◦B +RT ln[B])nB

= n(1− ξ)
[
µ◦A +RT ln

(
n(1− ξ)

V

)]
+ nξ

[
µ◦B +RT ln

(
nξ

V

)]

Recall from Equation (5.2.10) that we can compute the change in molar Gibbs free energy of reaction

as the partial derivative of G with respect to ξ. Moreover, suppose we “standardize” the reaction and let

nA + nB = n = 1. Thus,

∆G̃rxn =

(
∂G

∂ξ

)

T,P

=
∂

∂ξ

{
(1− ξ)

[
µ◦A +RT ln

(
1− ξ
V

)]
+ ξ

[
µ◦B +RT ln

(
ξ

V

)]}

= −µ◦A −RT
[
1 + ln

(
1− ξ
V

)]
+ µ◦B +RT

[
1 + ln

(
ξ

V

)]

= µ◦B − µ◦A +RT

[
− 1− ln

(
1− ξ
V

)
+ 1 + ln

(
ξ

V

)]

= µ◦B − µ◦A +RT ln

(
ξ

1− ξ

)

= ∆G̃◦rxn +RT ln

(
ξ

1− ξ

)
(5.2.11)

Hopefully it’s clear how this equation is the same as Equation (5.2.5). If not, I’ll try to make it so. Recall

that we defined nA = n(1 − ξ) and nB = ξ so that the expression in the logarithm becomes nB/nA. These

are concentrations though! Nice catch! Recall that we let ṼA = ṼB = V so that the volumes cancel out in the

expression, hence why we’re left with moles instead of concentrations.

The whole ξ thing get’s pretty weird I’d say, so here’s an example problem illustrating how we might use

it to analyze a system: Assume that a sealed vessel at a constant pressure of 1 bar initially contains 2 moles of

NO2(g). The system is allowed to equilibriate with respect to the reaction

2 NO2(g) −−⇀↽−− N2O4(g)
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The number of moles of NO2(g) and N2O4(g) at equilibrium are 2− 2ξ and ξ, respectively, where ξ is the extent

of reaction. Derive an expression for the entropy of mixing as a function of ξ.

Okay! We’ll start from the change in Gibbs free energy of mixing:

∆Gmix = Gmixed −Gunmixed

= (n1µ1)mixed − (n2µ2)unmixed

where n1 and n2 represent the number of moles of NO2(g) and N2O4(g), respectively, and µ1 and µ2 represent

their respective chemical potentials. Continuing, and using Equation (5.0.1) to substitute for the chemical

potentials which aren’t in their standard state in the equation above, we have

(n1µ1)mixed − (n2µ2)unmixed = n1(µ∗1 +RT lnx1) + n2(µ∗2 +RT lnx2)− (n1µ
∗
1 + n2µ

∗
2)

where x1 and x2 represent the respective mole fractions of NO2(g) and N2O4(g). Hence,

∆Gmix = n1(µ∗1 +RT lnx1) + n2(µ∗2 +RT lnx2)− (n1µ
∗
1 + n2µ

∗
2)

= n1RT lnx1 + n2RT lnx2

= (n1 + n2)RT

[(
n1

n1 + n2

)
lnx2 +

(
n2

n1 + n2

)
lnx2

]

= nRT (x1 lnx1 + x2 lnx2)

where n represents the total number of moles in solution. You may recognize this expression from Equation

(5.1.2). That’s because they’re the same thing. Noting that the enthalpy change associated with mixing is zero,

we can determine the entropy change by the relationship ∆G = −T∆S to afford the entropy as a function of

mole fractions:

∆Smix = −nR(x1 lnx1 + x2 lnx2)

Now to express the mole fractions of each species as a function of ξ. Notice that the vessel initially contains

2 moles of reactant so that when ξ = 0, the number of moles is 2. As ξ increases, the moles of reactant

will decrease by 2ξ (according to the reaction coefficient) and the moles of product will increase by ξ (again,

according to the reaction coefficient). Hence, the mole fractions can be expressed as

x1 =
2− 2ξ

2− ξ , & x2 =
ξ

2− ξ

which affords an expression for the entropy of mixing in terms of the extent of reaction:

∆Smix = −nR
[

2− 2ξ

2− ξ ln

(
2− 2ξ

2− ξ

)
+

ξ

2− ξ ln

(
ξ

2− ξ

)]

5.3 Conformational Equilibrium

In this section we’ll apply everything we’ve learned about the thermodynamics of equilibrium and apply it

to the conformational change of a protein. Surprisingly, a useful model for conformational equilibrium is a

two-state system where a protein exists in either a folded (native) or unfolded state. While this seems like an

over-simplified model, we’re already familiar with plenty of physical processes which exhibit this behavior: The

conformational equilibrium between the two chair conformers of cyclohexane and the keto-enol tautomerization

of a hydrocarbon are two great examples.

When dealing with conformational changes there are a few common aspects among every reaction of this

type: They are reversible reactions, no atoms are (net) added or removed from the molecule, and no covalent
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bonds are “broken,” only rearranged.

The conformational change we’ll consider now is the unfolded and folded conformers of a protein in

equilibrium with one another, modeled by U −−⇀↽−− N where U and N represent the unfolded and native forms

of the protein, respectively. This transformation has an equilibrium constant afforded by

Keq =
[N ]

[U ]
(5.3.1)

Already the beauty of this model is becoming clear: By knowing only the relative concentrations of the native

and unfolded states we can determine some thermodynamic quantities that describe the system, namely, Keq

and ∆G̃◦.

In practice, determining the concentrations of the native and unfolded states of the protein can be quite

complex. One method has proven useful for studying proteins in conformational equilibrium is circular dichroism

spectroscopy6, or just CD spectroscopy. Circular dichroism relies on the difference in the absorption of left and

right circularly polarized light, typically in the range of 200-230 nm. At these wavelengths, both α-helices and

β-sheets display strong negative “ellipticity”7 due to the regular and repetitive geometry of the structures. In

contrast, unfolded coils consist of primarily random coils and don’t display any sort of particular ellipticity.

Hence, the CD spectra of folded and unfolded proteins will look very different.

Unsurprisingly, the experimental spectrum will be a superposition of the basis spectra, that is, the experi-

mental spectrum will be a linear combination of the spectra for the unfolded and native proteins. The presence

of an isosbestic point on the spectra supports this theory. Below is a CD spectra.

Figure 5.1: Circular dichroism spectrum, illustrating superposition of basis spectra. The isobestic point is
the point at which all curves intersect. (A) Spectra of mixtures from the measurable equilibrium range. (B)
Spectrum for a mostly folded mixture.

Now we will introduce the simplest, both experimentally and conceptually, model for conformational

change, the thermal unfolding transition. Below is a theoretical graphic illustrating the distribution of conform-

ers for the two-state system during thermal unfolding. Note that Dr. Barrick uses YD to denote the protein in

a “denatured” state. I’ve been using YU to denote the same quantity.

Above, we see that by increasing the temperature of a system we can shift the equilibrium constant for most

proteins toward the unfolded state. In the “baseline” regions of the native and unfolded states of the protein,

the observed signal Yobs is insensitive to changes in temperature. However, when the equilibrium constant shifts

to the measurable range, the spectroscopic signal changes sharply with changes in temperature. The center of

6“Circular” refers to the polarization of light being measured and “dichroism” refers to the two types of light we can measure
using this method.

7Ellipticity is a measure of CD strength and is proportional to the amount of structured molecules present.
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Figure 5.2: (A) The observed signal, the solid black line, shows a sharp transition between the native and
denatured baselines. The value Tm is fixed at the arbitrarily fixed conditions in the graph. (B) The baselines
play a key role in determining the value of fractional populations and equilibrium constants. The fractional
populations fN and fU can be described geometrically with red arrows connecting the baseline to the observed
signal.

this transition, where the sample is such that [N ] = [U ], is referred to as the midpoint temperature, oftentimes

denoted as Tm. Suppose that we could measure the observable Yobs. Then how could we determine Keq from

a set of Yobs values?

The key idea lies in Figure 5.1, where we see that the signal Yobs is linearly proportional to the amount of

each state present. If we let fN and fU represent the fractional populations8 of the native and unfolded states,

respectively, we can represent the observed signal Yobs as

Yobs = fUYU + fNYN (5.3.2)

Since fU + fN = 1 by the conservation of mass, we can rewrite the expression for Yobs to afford

Yobs = fNYN + (1− fN )YU

= fNYN + YU − fNYU
= fN (YN − YU ) + YU

fN =
Yobs − YU
YN − YU

(5.3.3)

A similar expression can be derived for the fractional population of YU :

fU =
YN − Yobs
YN − YU

(5.3.4)

With Equations (5.3.3) and (5.3.4) we can give a description of the equilibrium constant, after some algebraic

manipulation. Start by noticing

fN
fU

=

(
Yobs − YU
YN − YU

)(
YN − YU
YN − Yobs

)
=
Yobs − YU
YN − Yobs

and that we could have also expressed the fractional populations as fU = [U ]/([U ] + [N ]) and fN = [N ]/([U ] +

8The fractional populations fU and fN , which range from zero to 1, can be thought of as probabilities, as long as the sample
is large enough for good averaging (by the law of large numbers).
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[N ]) so that the ratio above could be alternatively expressed as

fN
fU

=

(
[N ]

[U ] + [N ]

)(
[U ] + [N ]

[U ]

)
=

[N ]

[U ]
= Keq (5.3.5)

Geometrically, we can think of Keq as the ratio of the two red arrows in Figure 5.2. For this reason, we need

enough sample points in the “baseline” regions to know where to start these arrows when trying to analyze

CD spectroscopy data. With this in mind, we can think of the conformational transition as containing three

distinct regions: The native conformer baseline, the transition region, and the unfolded conformer baseline.

Referring back to Equation (5.3.5), we have that

Keq =
Yobs − YU
YN − Yobs

(5.3.6)

which allows us to (finally) rewrite the observable quantity Yobs as

Yobs =
YU + YNKeq

1 +Keq
=
YU + YNe

−(∆H̃◦−T∆S̃◦)/RT

1 + e−(∆H̃◦−T∆S̃◦)/RT
=
YU + YNe

−(∆H̃◦/RT )e(∆S̃◦/R)

1 + e−(∆H̃◦/RT )e(∆S̃◦/R)
(5.3.7)

Equation (5.3.7) illustrates the enthalpy and entropy dependence of the observable Yobs. Moreover, we see

that Yobs varies with temperature. Naturally, the next question we might ask is whether or not ∆H̃◦ and ∆S̃◦

depend on temperature as well (the answer is that they do).

You may recsall that we have numerous definitions and expressions for the heat capacity. In this instance,

while we’re trying to determine the temperature dependence of the enthalpy and entropy, we’ll mainly be

concerned with the relationship dH̃ = C̃P dT . Similarly, we have that dS̃ = (C̃P /T )dT . UNFINISHED



CHAPTER

6

CALORIMETRY AND

THERMOCHEMISTRY

Calorimetry

- Scientist

As the name(s) imply, calorimetry and thermochemistry rest on the analysis of heat energy and exchange

with a system’s surroundings. As such, the enthalpy of reaction will be of primary consideration constantly,

in (slight) contrast to the discussion on thermodynamics previously. This contrast poses a question: Why is it

that the entropy of a reaction is emphasized so heavily in our formal development of thermodynamics, whereas

when we begin to analyze chemical reactions and processes everything seems to be dominated by enthalpy?

The answer to this question lies in how we define a system. Oftentimes, the thermodynamic system of

interest in calorimetry and thermochemistry is defined as the reacting molecules and is typically closed (the

system is exchanging heat with the surroundings but not matter). In this system, the bonds of each molecule

are broken and reformed to create a lower energy ensemble of particles. This results in the enthalpy of reaction.

When this heat is released (or absorbed) from a reaction it goes into heating up (or cooling down) the

surroundings, by the second law of thermodynamics. If we alter our POV of the system from the collection of

particles to the collection of particles and the surroundings, we can imagine that the system is isolated. Then,

since the energy of an isolated system must be conserved, the latent energy1 in the “energy-rich” bonds of the

molecules that go into heating up the surroundings don’t actually change the energy of the system.

The hotter surroundings will be associated with a greater entropy since

∆Ssurr =

∫ Thigh

Tlow

CP,surr(T )

T
dT > 0

where the change in temperature of the surroundings can be determined by

−∆Hrxn =

∫ Thigh

Tlow

CP,surr(T )dT

1latent energy
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Thus, if we consider the system as including both the reacting molecules and the immediate surroundings,

we would say that reactions occur because they are entropically favored—there are not as many configurations

associated with the energy “trapped” in bonds as compared to the energy liberated into thermal motion.

6.1 Calorimetry

Calorimetry is the process of measuring the amount of heat released or absorbed during a chemical reac-

tion. There are numerous different types of calorimetry to consider: Constant-pressure, constant-volume, and

differential scanning calorimetry are all tools which have proven their use in many fields of physical chemistry.

No matter the method by which heat exchange is measured, calorimetry is useful in the succeeding

section on thermochemistry, the study of heat energy. As we’ll see, calorimetry provides a much more direct

measurement of various equilibria, including conformational equilibria discussed previously.

6.1.1 Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) is a technique in which the difference in amount of heat required

to increase the temperature of a sample, i.e., the heat capacity, is measured as a function of temperature.

This “differential” heat capacity is denoted δC̃P . As the name implies, our goal is to make the differences in

temperature at each step we measure the difference in heat as small as possible in order to accurately measure

the heat capacity of a substance.

Since unfolded and folded proteins have different heat capacities, DSC is useful in elucidating the struc-

tures of different conformers for the protein. As we saw earlier in Section 5.3 on conformational equilibrium,

the fastest rate of change between the native and unfolded state occurs at Tm, the midpoint temperature. This

is where the spike occurs in Figure 6.1A.

Figure 6.1: (A) A DSC folding transition (black line) super imposed on the population-weighted average heat
capacity (red line denoted by C̃P,pwa, shown in (B) as black line). The area between the black and red lines
is the enthalpy of unfolding for the reaction. (B) An expanded view of the population-weighted average heat
capacity. Note that the difference between the two baselines is the change in molar heat capacity.

Wait a minute... does the sharp peak we see at Tm even make sense? An increase in heat capacity

certainly makes sense; after all, the heat capacity of the unfolded state is greater than that of the native state.

However, if that were the only explanation, we’d expect a step function rather than a peak.

To rationalize this result we’ll have to do some math. We can express the measured differential heat

capacity as

δC̃P = C̃P,pwa + C̃P,ex (6.1.1)

where C̃P,pwa represents the population-weighted average heat capacity of the sample2, and C̃P,ex represents

2The “population-weighted average” can be thought of as the sum of the heat capacities of native and unfolded proteins
multiplied by their respective fractional populations. I’m trying to find a way to rephrase the term “weighted average” but I feel



60 CHAPTER 6. CALORIMETRY AND THERMOCHEMISTRY

the “excess” heat capacity which must be added to C̃P,pwa to afford the measured δC̃P . We can rewrite C̃P,pwa

in terms of the heat capacities for the native and unfolded states to afford a new expression for δC̃P :

δC̃P = fN C̃P,N + fU C̃P,U + C̃P,ex

= fN C̃P,N + (1− fN )C̃P,U + C̃P,ex

= C̃P,U + fN∆C̃P,N + C̃P,ex (6.1.2)

To secure a better understanding of the shape of the DSC curve we need an analytical expression for C̃P,ex.

This can be determined from analyzing the differential enthalpy, δH. Unlike the heat capacity, dH is simply a

linear combination of the weighted averages for the native and unfolded state since enthalpy is a state function:

δH̃ = fN H̃N + fU H̃U

= H̃U + fN∆H̃ (6.1.3)

Equation (6.1.3) can be obtained by following a similar algebraic approach as was taken to afford Equation

(6.1.2). Because DSC measures heat capacity, we must find a way to relate these enthalpies to the heat capacity

of a protein. Lucky for us the heat capacity at a constant pressure is equal to the partial derivative of the

enthalpy with respect to temperature:

δC̃P =

(
∂δH̃

∂T

)

P

=

(
∂(H̃U + fN∆H̃)

∂T

)

P

=

(
∂H̃U

∂T

)

P

+ fN

(
∂∆H̃

∂T

)

P

+ ∆H̃

(
∂fN
∂T

)

P

(6.1.4)

The first two derivatives are simply expressions for heat capacity which sum to afford C̃P,pwa by Equation

(6.1.2). Therefore, we are left with

C̃P,ex = ∆H̃

(
∂fN
∂T

)

P

(6.1.5)

which explains where the “extra” heat capacity comes from.

How can we interpret Equation (6.1.5)? Firstly, it should be clear that the large amplitude of the peak

comes from the derivative term, since the derivative of the transition is so large. At the baseline values, where

there is no change in the fractional populations of the native and unfolded states, the derivative term goes to

zero and we see the plots in Figure 6.1A superimposed on one another.

Alternatively we could relate this unexpected behavior to what we already know about phase transitions:

Just as how in a phase transitions all energy being put into the system goes into breaking interactions rather

than raising the temperature, in protein folding the energy being put into the system goes into altering the

conformation of the protein rather than raising the temperature of the system.

Our goal now is to fit DSC folding transitions. To do this, we’ll start by expressing the derivative in

Equation (6.1.5) in terms of some protein folding parameters. Note that

fN = KeqfU

= Keq(1− fN )

= Keq − fNKeq

fN (1 +Keq) = Keq

fN =
Keq

Keq + 1

the name itself is already pretty self-explanatory.



6.1. CALORIMETRY 61

and so we can compute the derivative as

(
∂fN
∂T

)

P

=
∂

∂T

(
Keq

Keq + 1

)

P

=
(Keq + 1)−Keq

(Keq + 1)2

∂Keq

∂T

=
1

(Keq + 1)2

∂Keq

∂T
(6.1.6)

At this point both Dr. Barrick and Dr. Fried make a substitution that I don’t think either of them ever explain

once which, understandably, is confusing. So, let me make it more clear. Notice that

∂ lnKeq

∂T
=

1

Keq

∂Keq

∂T
⇒ Keq

∂ lnKeq

∂T
=
∂Keq

∂T

Thus, we can rewrite Equation (6.1.6) as

(
∂fN
∂T

)

P

=
1

(Keq + 1)2

∂Keq

∂T
=

Keq

(Keq + 1)2

∂ lnKeq

∂T
(6.1.7)

Why even bother making our lives more difficult in this way? Recall Equation (5.2.8), namely, the van’t Hoff

equation, which relates the natural logarithm of the equilibrium constant to relevant thermodynamic quantities.

Taking the derivative of the van’t Hoff equation with respect to temperature affords

(
∂fN
∂T

)

P

=
Keq

(Keq + 1)2

∆H̃

RT 2

The left-most term of the right hand side in the equation above is known as the “spread over states” term,

alternatively expressed as
Keq

(Keq + 1)2
=

Keq

Keq + 1
× 1

Keq + 1
= fNfU (6.1.8)

In addition to the fact that this expression peaks at Tm, the spread over states term appears in a variety of

conformational equilibria such as ligand-binding interactions. For two-state systems, such as the one we’re

currently interested in, it represents the extent to which the population is spread out over N and U .

Putting everything we have together finally, our expression to fit the DSC curve is given as

δC̃P = C̃P,U + fN∆C̃P,N +
Keq

(Keq + 1)2

∆H̃2

RT 2
(6.1.9)

6.1.2 Bomb Calorimetry (Constant Volume Calorimetry)

To measure the heat associated with a chemical transformation (most commonly combustion) we can use bomb

calorimetry. In a bomb calorimetry experiment, we ignite a (typically highly exothermic) chemical reaction

in a container of a fixed volume and record the change in temperature of the water reservoir surrounding the

calorimeter. Because dV = 0, there is no work done by the system and by the first law of thermodynamics we

have that q = ∆U . This heat will go into warming up the vessel and water bath. If we define our thermodynamic

system as being the reaction, vessel, and water bath, all of which are encased in a thick diathermal container,3

no heat is lost to the surroundings.

The tricky part of this sort of experiment is determining the heat capacity of the calorimeter which will

be some weighted average of the heat capacity of the steel vessel and the water:

CV,calorimeter = nwaterC̃V,water + nvesselC̃V,vessel

3This is a fancy way of saying no heat can be exchanged through the container.
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In practice, we can evaluate the heat capacity of the calorimeter (often referred to as the calorimeter constant)

by performing a reaction with a known ∆Urxn and working backwards:

∆Urxn = ∆T (nC̃V,water + Ccal)

As we’ve seen before, at a constant pressure q = ∆H so that the calorimeter constant can be used to

measure ∆Hrxn:

∆Hrxn = CP,cal∆T (6.1.10)

If we performed this reaction at 298 K and 1 atm we will have measured ∆H◦rxn, by definition.

6.2 Thermochemistry

Thermochemistry is the study of heat energy associated with chemical reactions and physical transformations.

Chemical reactions may absorb or release heat, those being endothermic and exothermic reactions, respectively.

In combination with entropic calculations, the spontaneity of a chemical reaction may be determined from the

Gibbs free energy change.

6.2.1 Heats of Formation

The standard enthalpy of formation, or just standard heat of formation is the change in enthalpy during the

formation of 1 mole of a substance from its constituent elements with all substances in their standard states.

An example reaction which satisfies these conditions might be the formation of carbon dioxide:

C(s,graphite) + O2(g) −−→ CO2(g) ∆H̃◦f = −393.5 kJ/mol

The true utility of heats of formation rest on the fact that enthalpy is a state function which permits the

use of Hess’s law, stating that the heat of any reaction is equal to the sum of the heats of reaction which in

sum are equivalent to the overall reaction. Here is an entire example I’ve stolen from the lecture slides because

(i) it’s a good example of using Hess’s law and (ii) as if I’m gonna type all that out for a concept that I already

understand very well.

Figure 6.2: Using Hess’s law to determine the heat of formation of the amino acid alanine.

As a consequence of our definition, ∆H◦f will be zero for pure elements in their most stable states.

However, this is quite alright because “absolute enthalpy” is already something we’ve determined is arbitrary.

Entropy, however, is different. We can define absolute molar entropies for each substance by the third

law of thermodynamics. Moreover, it is necessarily nonzero for all substances in their pure forms.

What would a discussion on thermodynamics be without the Gibbs free energy? Since ∆G◦f depends on

the enthalpy of formation it is also not possible to define this quantity on an absolute scale. Hence, the common
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convention is to define ∆G◦f to be zero for elements in their most stable states. In principle, this ignores the

absolute entropy of an element, however, when computing ∆G◦rxn, this contribution goes away and we have

nothing to fear. That is to say, we can define entropy on an absolute scale but it is not necessary to do so to

determine ∆S◦rxn.

Here is an example illustrating the use of heats of formation and thermodynamic cycles: Suppose I’m

interested in developing a catalyst to perform the following chemical reaction:

Benzene(l) + 3 H2(g) −−⇀↽−− Cyclohexane(l) ∆Hrxn = −202 kJ/mol

In a constant pressure calorimeter I combust benzene at STP and find that the temperature of 10 kg of water

in the calorimeter increases by 6◦C. My friend Sai runs the same experiment, this time using only 1 kg of water

in his calorimeter, and finds that the temperature of the water reservoir increases by 58.5◦C. Why was the

temperature increase of Sai’s experiment not simply ten times greater than that of my experiment?

Instead of doing math I’ll offer a conceptual answer to this question. Obviously with less water in the

calorimeter, the temperature of the water will increase by more because the specific heat capacity is the amount

of heat required to raise the temperature of a kilogram of a substance by a unit celsius. Hence, with more mass

and the same heat afforded to the system there will be a smaller change in temperature. However, note that

the heat capacity is not constant, and can vary significantly over large temperature ranges. In Sai’s experiment

there was a large increase in temperature and so the heat capacity of the water increased enough to illustrate

an experimental difference in the expected temperature change of the reservoir.

Ultimately, the discrepancy we see is due to the fact that the heat capacity of all substances is a function

of the temperature, and in particular, increases with temperature.

With a year of committed research I’ve finally discovered a catalyst that can hydrogenate benzene, with

the caveat that it works only at 400 K, where the following reaction takes place:

Benzene(g) + 3 H2(g) + Fecatalyst −−⇀↽−− Cyclohexane(g) + Fecatalyst

Our work isn’t done, however, because now I am interested in determining the standard enthalpy of reaction

for this synthesis. Describe the relevant thermodynamic quantities I’ll need to compute ∆H◦rxn at 400K, and

write a mathematical expression with these quantities to explicitly show how ∆H◦rxn at 400 K can be found.

You don’t have to evaluate the expression but I’m not your mom I’m not gonna tell you what to do.

To compute the enthalpy of reaction at 400 k we’ll need the enthalpies of formation of everything involved

in the reaction, heats of vaporization for benzene and cyclohexane, the heat capacities of benzene and cyclo-

hexane in both the liquid and gaseous states for each compound, and the heat capacity of H2(g). Notice that I

omitted the catalyst from the necessary quantities we’ll need. This is because the catalyst appears in the same

phase on both sides and therefore won’t affect the enthalpy of reaction at all. Also, notice that we’re given the

enthalpy of reaction for the hydrogenation of benzene to cyclohexane in their liquid states above. So, instead

of requiring the heats of formation for each compound we can base our analysis off of the enthalpy of reaction

for the liquid phase transformation which affords us no need for knowing the heats of formation for any of the

reactants or products.

Figure 6.3 hopefully summarizes what I just said. Thus, an expression for ∆H◦rxn at 400K is given by

∆H̃rxn(400 K) = ∆H̃◦rxn

+

{∫ Tv,benz

298

(
C̃P,benz + 3C̃P,H2

dT
)

+ ∆H̃vap,benz +

∫ 400

Tv,benz

(
C̃P,benz + 3C̃P,H2

dT
)}

+

{∫ Tv,cxh

298

C̃P,cxhdT + ∆H̃vap,cxh +

∫ 400

Tv,cxh

C̃P,cxhdT

}

where the first term is the heat of reaction for the hydrogenation in the liquid phase, the second term represents
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Figure 6.3: Thermodynamic cycle for the proposed hydrogenation of benzene to cyclohexane. Shoutout Dr.
Fried for making this graphic.

the contribution from the heating up and vaporization of the reactants, and the third term represents the heating

up and vaporization of the product. Also note that I used Tv,X to represent the temperature of vaporization

for a species X cause they weren’t given to us.

6.2.2 Bond Dissociation Enthalpy

The bond dissociation enthalpy4 (BDE) is the energy needed to break one mole of a bond between atoms to

give separated atoms whilst the compound is in a gaseous state. Organic chemists tend to focus more attention

on the breaking of specific bonds in a molecule as opposed to creating one from its constituent elements.

BDEs are necessarily positive since breaking bonds requires an input of energy. Interestingly, BDEs are

measured using spectroscopic models of bond vibrations, since the reactions are oftentimes too difficult to

execute experimentally.5

Bond dissociation energies have proven useful in predicting whether a chemical reaction will be enthalpi-

cally favorable or not. This is all fine and dandy, however, using BDEs is not always exact because the energy

of one sort of bond in a particular molecule will not always be the same as the same type of bond in a different

molecule. Why? This is the question that Sidney Benson sought to answer (in the next section, in fact).

Here is a question regarding bond dissociation energies from one of the homeworks that I thought was

cool: Consider the possibility that the Cope rearrangement proceeds through a biradical intermediate. We could

imagine two such possible pathways, illustrated in Figure 6.4. Evaluate the feasibility of the two mechanisms,

based on the following data:

Quantity kcal/mol

∆H◦f (1,5-hexadiene) 20.1

∆H◦f (propene) 4.8

∆H◦f (cyclohexane) -29.5

BDE(H–H) 104

BDE(H–propyl) 86.5

BDE(H–cyclohexyl) 95.5

To evaluate the feasibility of each mechanism we can start by computing the enthalpy of formation for

the two intermediates. For the top intermediate in Figure 6.4, the heat of formation is going to be a linear

combination of the heat of formation for two propene groups, the BDE(H–propyl), and the BDE(H–H) since

the H atoms we liberate will react to form H2 gas.

4The bond dissociation enthalpy can also be referred to as the bond dissociation energy and even just the bond strength. For
all intents and purposes, these phrases are interchangeable.

5These types of reactions are known as “homolytic cleavages.”
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Figure 6.4: Two possible biradical pathways for the Cope rearrangement

Thus, this heat of formation is given by

∆H◦f,propenes = 2∆H◦f,propene + 2BDE(H–propyl)− BDE(H–H)

= 2(4.8) + 2(86.5)− (104)

= 78.6 kcal/mol

We can follow a similar procedure to find the heat of formation for the lower intermediate. In this case,

the heat of formation will be a linear combination of the heat of formation for a molecule of cyclohexane, the

BDE(H–cyclohexyl), and the BDE(H–H) for the same reason as above. Thus,

∆H◦f,cyclohexane = ∆H◦f,cyclohexyl + 2BDE(H–cyclohexyl)− BDE(H–H)

= (−29.5) + 2(95.5)− (104)

= 57.5 kcal/mol

Clearly the formation enthalpies for each of these are very high with respect to the enthalpy of formation

for 1,5-hexadiene, coming in at only 20.1 kcal/mol. Thus, we can say with confidence that the biradical

intermediate is implausible and the more likely mechanism is the concerted sigmatropic rearrangement, which

we know to be the case.

Here’s another example, this one being slightly more disconnected from what we just discussed but impor-

tant nonetheless6: A remarkable property of NaCl is that its solubility is essentially constant in temperatures

from 0◦C to 100◦C, going from 370 g/L to 380 g/L over the interval. Explain what this implies about relevant

thermodynamic properties for the dissolution of sodium chloride in water and rationalize the result with a

molecular-level explanation.

Recall Equation (5.2.8), the van’t Hoff equation, which relates the equilibrium constant of a reaction to

some relevant thermodynamic quantities:

lnKeq =
−∆H̃◦rxn

R

(
1

T

)
+

∆S̃◦rxn
R

We’re given that the solubility is unchanging over a temperature range and therefore the equilibrium constant,

which can be thought of as a dissociation constant in this context, must be unchanging. Hence, the enthalpy

of reaction must be zero for the dissolution of sodium chloride in water.

Now, how can we rationalize this result using molecular interactions? First, let’s illustrate the transfor-

mation that is taking place:

NaCl(s) −−⇀↽−− Na+
(aq) + Cl−(aq)

6Also I just wasn’t really sure where to put this example but I really like the question so I wanted to include it somewhere.
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With the enthalpy of reaction being zero we can think of the heats of formation of the reactants and products

being equal. Note that crystalline NaCl(s) has a very high bond enthalpy associated with the ionic bonds in

the lattice and to match this large heat of formation there must be an equally strong enthalpic contribution

from solvent-ion interactions in the products. Thus, the solvation energy associated with dissolving the sodium

and chloride ions must be equally as strong as the bond enthalpy of the ionic bonds in the lattice of NaCl(s).

With all of this in mind it makes sense intuitively that the dissolution of sodium chloride is a primary entropy

driven reaction.

6.2.3 Benson Group Additivity

Benson group additivity uses the experimentally calculated heats of formation for individual groups of atoms to

calculate the entire heat of formation for a molecule under investigation7. Moreover, using Benson increments

can quickly afford an estimate for whether a reaction is endo- or exothermic.

I think the best way to illustrate Benson increments is using an example. Here’s one from the homework:

Use Benson increments to calculate ∆H◦rxn for the retro Diels-Alder reaction below, with the values given by

the NIST at this link. Also, use the following strain values:

Strain for bicyclo-(4,1,0)-heptane ∆H◦ = 28.9 kcal/mol

Strain for cis double bond ∆H◦ = 1.0 kcal/mol

Figure 6.5: Retro Diels Alder Reaction

Note that with the link given we don’t have values for C−C2F2 or F−C. However, notice that we have

bond of the former type and two of the latter type in each structure so that these values would cancel anyways.

With this in mind, I won’t include any of these terms in the calculation for the heats of formation. Figure 6.6

illustrates the Benson increments for each group on both the reactant and product.

Figure 6.6: Benson increments labeled for each group

Then, proceeding with the calculation, the heat of formation for the reactants is given by (making sure to

7Benson increments fall under the umbrella category of heat of formation group additivity, a topic which includes all of the
methods for calculating the heat of formation of an organic compound based on additivity. Other methods include the Gronert
model which is based on not breaking molecules into fragments but instead considering the 1,2- and 1,3- interactions of groups

https://www.nist.gov/system/files/documents/srd/jpcrd513.pdf
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include the terms for ring strain and cis double bonding)

∆H◦f,reactant = (−4.8) + (−5.0) + (−2.4) + (−1.7) + 2(8.6) + 28.9 + 1 = 33.2 kcal/mol

and the heat of formation for the product is given by

∆H◦f,product = 2(6.3) + 2(8.6) + 2(6.8) + 1 = 44.4 kcal/mol

so that the heat of reaction can be computed as

∆H◦rxn = 44.4− 33.2 = 11.2 kcal/mol



CHAPTER

7

STATISTICAL MECHANICS

All these suppositions are consistent and conceivable. Why should we give the preference to one,

which is no more consistent or conceivable than the rest?

—David Hume

Statistical mechanics spans a much broader, intellectually challenging, and mathematically rigorous field

than I cover here. I’ll try to talk about things that I find cool that are even somewhat related to what Dr.

Fried asks of his students but not covered in class but I implore anyone who’s interested to read more on the

subject.

The science of statistical mechanics has the special function of providing reasoning for treating the be-

havior of mechanical systems under circumstances such that our knowledge of the condition of the system is

less than the theoretically possible maximum. That is, it allows us to make good guesses. Since our knowledge

of the physical world and thermodynamic systems is such that we can never know everything about the system,

statistical mechanics provides significant supplementation to ordinary mechanics, which is abstract at best

when it comes to real systems. Stated in another way, the transition from knowing exactly what is going on to

knowing only the probability of exactly what is going on is the same transition from mechanics to statistical

mechanics. With these key ideas lurking in the background we’ll begin to analyze the general structure of

statistical mechanics, beginning with the ensemble approach.

An ensemble is a large collection of trajectories of a system, considered all at once, each of which represents

a possible state the system might be in. A thermodynamic ensemble is a specific variety of ensemble that is in

statistical equilibrium and is used to derive the properties of thermodynamic systems from the laws of classic

and/or quantum mechanics.

For our purposes, the ensemble method will provide a means of accessing bulk thermodynamic properties

from molecular models. On their own, molecular models tells us nothing about the equilibrium distribution of

thermodynamic properties and instead provide a comprehensive list of allowed microstates of a system.

The beauty of using ensembles instead of computation-intensive simulations1 is in our ability to calculate

the average thermodynamic properties of a system by averaging across the different trajectories (mentioned

1Running simulations for a system involves determining (arbitrary) initial conditions, defining potential functions, evaluating
the instantaneous forces on each particle at the system at all times in the interval, and generating new conditions from these
forces. With modern technology simulations can be very intuitive and visualized with relative ease. However, they require many
calculations and were not possible until very recently. Hence the creation of the ensemble method.

68
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above) within our ensemble. This “convergence” to the time averages is made possible by the Ergodic hypoth-

esis,2 which formally states that ensemble averages are equal to time averages,

〈A〉 ≡ 1

N

N∑

i=1

Ai = lim
t→∞

∫
A(t)dt (7.0.1)

where Ai is some measure of the system, and N is the number of trajectories we consider in the system. Phrased

slightly differently, the Ergodic hypothesis posits that the average of microstates taken at different times from a

single system can be replaced with the average of microstates taken from many trajectories of the same system,

taken at an arbitrary time.

The central idea behind Ergodic theory is that any single trajectory within an ensemble will eventually

pass through all accessible trajectories possible in the system. For example, this would imply that if we looked

at a gas particle restricted to a box of a finite volume then the particle would eventually occupy every single

accessible point in space within the box. Unfortunately, not many systems are strictly ergodic, hence the

“Ergodic hypothesis”.

There are two important differences that make dealing with ensembles easier than simulations:

1. The ensemble has no concept of time.

2. We can predict many properties about an ensemble (in the form of ensemble-averaged properties) start-

ing from a potential function (for thermodynamic systems these are states and energies) and without

necessarily simulating the dynamics.

Based on what we’ve read so far, ensembles seem like the clear winner when choosing a method of trying to

connect the microscopic properties of a system to the macroscopic ones through statistical mechanics. However,

there are some aspects of our assumptions about ensembles that we need to keep in mind when choosing the

trajectories of the system to represent the ensemble.

Firstly, for ensemble-averages to accurately reflect real, observed properties, the number of times a given

microstate appears in the ensemble (i.e., its weight) must be directly proportional to the amount of time the

system would spend in that microstate. Then, the challenge is to ensure we include each microstate the right

number of times. How then can we populate an ensemble without explicitly looking at the simulation? That’s

a good question.

7.1 Extensive and Intensive Properties

https://scholar.harvard.edu/files/schwartz/files/8-freeenergy_0.pdf

7.2 The Microcanonical (NVE) Ensemble

We’ll now consider the simplest case of an isolated system. Then, we have a well-defined number of molecules

(N) in the system as well as a constant volume (V) and energy (E). In creating the ensemble we’ll choose m

trajectories of the system so that each trajectory corresponds to one of m different microstates. Logic insists

that if all m microstates have equal energy then in theory they should be equiprobable (or in the words of Dr.

Fried, they’re a priori equally likely). Let Ni represent the ith microstate and let A represent the total number

of microstates in our ensemble so that
m∑

i=1

Ni = A (7.2.1)

2The Ergodic hypothesis is part of Ergodic theory, which is the study of systems possessing the property that given enough
time, all points within a system will eventually visit all parts of the space that the system exists in. This theory implies that the
average behavior of a system can be deduced from the “trajectory” of a normal point, exactly as we’ve postulated above. This
property is known as ergodicity and is pretty cool.

https://scholar.harvard.edu/files/schwartz/files/8-freeenergy_0.pdf
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where the probability of being in a particular microstate pi is given by,

pi =
Ni
A

(7.2.2)

(sometimes referred to as the “case of equally likely outcomes”).

Now let’s shift our attention to the ways of assigning trajectories to this system, i.e., choosing the total

number of ways we could have selected N1, . . . ,Nm from the A total number of microstates. This is given by

the multinomial coefficient: (
A

N1, . . . ,Nm

)
=

A!

N1! . . .Nm!

Now that we have a representation of the number of microstates W of the system, the most probable state

of the system is the one which maximizes W . This is tantamount to asking, which value of W maximizes

S = kB lnW?3 Recall that for an isolated system, entropy is an indicator of spontaneity. So, the intuition

behind maximizing entropy should make sense in the context of trying to find the most probable state of the

system at equilibrium. In the above representation for W , apply Stirling’s approximation:

lnW = A lnA−
m∑

i=1

Ni lnNi

The algebra is omitted here because a) it’s lame and b) it’s pretty simple.

Now for the fun part: Notice that we could increase W with ease by simply having a larger ensemble. So,

let’s assume that we have a fixed number of microstates in the ensemble so that A is constant. Furthermore,

notice that W is a function of m variables, all of the Ni’s (the A is fixed number, as mentioned literally 2

seconds ago how did you already forget smh) constrained to the condition that A =
∑m
i=1 Ni = const. Hence,

we invoke (enter stage left) the Lagrangian:

L(~x,~λ) = f(~x)−
c∑

i=1

λigi(~x) (7.2.3)

If you’ve taken Calc III, skip this paragraph. The method of Lagrange multipliers utilizes the fact that for

the level sets of a n-dimensional function, the gradient (a fancy word for the vector of partial derivatives for a

function of more than one variable) of the function is always perpendicular to the level sets. Hence, when the

function we are trying to optimize (f(~x) above) is along the constraint function (g(~x) above) their gradients

will be parallel. But Sam, I don’t see any gradients above, what’s up with that? Not only is that a fantastic

observation, but also it segways greatly into the following point: We’re trying to optimize the function f above,

so let’s find the gradient and set it equal to zero (just as we would in single-variable calc):

0 = ∇f(~x)−∇
( c∑

i=1

λigi(~x)

)

∇f(~x) = ∇
( c∑

i=1

λigi(~x)

)

∇f = λ∇g

The last equation (hopefully) looks familiar if you’ve taken Calc III. Thus, for a system of m variables (like the

3Note that we have this relationship between maximizing W and S because the natural logarithm is a monotonically increasing
function.
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one we began with), we’re left with a system of equations of the form

∂f

∂x1
(~x) = λ1

(
∂g

∂x1
(~x)

)

∂f

∂x2
(~x) = λ2

(
∂g

∂x2
(~x)

)

...

∂f

∂xm
(~x) = λm

(
∂~g

∂xm
(~x)

)

alongside the initial constraint function (which I didn’t rewrite above)4.

Now, how can we apply the Lagrangian to the microcanonical ensemble? Notice that the function we are

trying to optimize (in particular, maximize) is lnW while we’re constrained to the fact that A = const. So, in

the example above we have f ∼ lnW and g ∼ A. Then, we are left with

L(~x,~λ) = lnW − λ
m∑

i=1

Ni

= ∇
(
A lnA−

m∑

i=1

Ni lnNi
)
− λ∇

( m∑

i=1

Ni
)

∇
(
A lnA−

m∑

i=1

Ni lnNi
)

= λ∇
( m∑

i=1

Ni
)

To simplify our lives let’s first differentiate only one of these elements on the left-hand side with respect to

some Ni and determine what the partial derivatives look like:

∂

∂Ni

(
A lnA− Ni lnNi

)
=

(
∂A
∂Ni

lnA + A
∂ lnA
∂Ni

)
−
(
∂Ni
∂Ni

lnNi + Ni
∂ lnNi
∂Ni

)

= lnA + A
1

A
− lnNi + Ni

1

Ni
= lnAi − lnNi

= ln

(
A
Ni

)

For the derivation above, recall that A =
∑m
i=1 Ni so that ∂A/∂Ni = 1. Now, let’s relate this to our Lagrange

equation above:

∇
(
A lnA−

m∑

i=1

Ni lnNi
)

= λ∇
( m∑

i=1

Ni
)

ln

(
A
Ni

)
= λ

∂

∂Ni

(
Ni
)

ln

(
A
N∗i

)
= λ

N∗i
A

=
1

eλ
(7.2.4)

Here, N∗i denotes the set of Ni which maximize W . Awesome! Recall two things: 1) We have m equations of

this form for each Ni and 2) each of the m equations will look the exact same because we derived this result

4More generally, optimizing a nonlinear function with a set of constraints which are inequalities instead of equalities requires
satisfying the Karush-Kuhn-Tucker conditions, a set of optimality conditions which are useful in finding the minima of such
systems. This could not be less related to this class, however, I just took my intro to optimization final and the KKT conditions
are all I can think about.
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using an arbitrary Ni. Then, summing each of these equations affords

N∗1
A

+
N∗2
A

+ · · ·+ N∗m
A

=
A
A

= 1 = me−λ

m = eλ

Now, returning to our m equations, recall that pi = Ni/A for any given i so that pi = 1/m by Equation

(7.2.4). This result is uber important: In the beginning of this derivation we postulated that each the microstates

was equiprobable; here we proved it. Not only is this the most probable ensemble, but later we’ll come to realize

that this is the only possible ensemble.

An interesting connection between this derivation and the macroscopic world is in the limit as A tends to

infinity. As the number of possible trajectories increases (that is, m increases; this is the quantity we constrained

to a constant earlier), the probability that a particular microstate effectively decreases so that the distributions

of each particular Ni becomes more tightly peaked. Hence, we view macroscopic systems as “ordered,” even

when their underlying molecular descriptions are immensely chaotic.

With this critical fact derived, let’s derive some terms and organize our results:

• pi =
1

eλ
=

1

m
is the population of the ith microstate, which is equivalent to the probability of occupying

a particular microstate in this ensemble.

• Ω = eλ = m is the Microcanonical partition function. It illustrates all of the possible microstates possible

in the system.

• S = kB ln Ω is the entropy of the microcanonical ensemble.

7.2.1 The Microcanonical Ensemble for an Ideal Gas

So far we’ve considered an ensemble for a discrete number particles. Now, we’ll analyze the mechanics of an

ideal gas.

Consider a collection of N gas particles, each of which has 3 degrees of freedom (movement in the x, y,

and z directions). Then, we can express the total energy of the system as,

E = PE + KE = 0 +

3N∑

i=1

1

2
miv

2
i =

3N∑

i=1

p2
i

2mi
(7.2.5)

that is, all of the energy is in the form of kinetic energy. Furthermore, suppose that this gas is isolated so that

the energy of the system can be considered constant and all microstates have the same energy.

How can we express the number of microstates of the system? Firstly, consider a single atom of ideal gas:

The energy of this atom is given by

E =
p2

2m
=

1

2m
(p2
x + p2

y + p2
z)

p2
x + p2

y + p2
z = 2mE (7.2.6)

Notice that this equation is in the form of a 3-dimensional sphere with radius
√

2mE. Thus, each point on the

“surface” of this sphere (“surface” is in quotes here because it’s not technically a sphere, but it makes our life

easier thinking about this situation in terms of a sphere) has an equal weight in the ensemble and all points off

the surface have zero weight in the ensemble.

Above we considered a single atom of an ideal gas with 3 translational degrees of freedom which afforded

momentum in the x, y, and z directions, px, py, and pz, respectively. However, we also must specify the

coordinates of that atom, x, y, and z. Then, each microstate is defined by 6 points and therefore lives in

6-dimensional space, as opposed to 3-dimensions. Additionally, recall that each microstate of this system that
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has weight in the ensemble must lie on the “shell” corresponding to a specific amount of energy E. Then, if we

integrate over each coordinate of the system over the entire phase space,

Ω(E) =

∫

E

dx1dy1dz1 . . . dzNdpx1
dpy1 . . . dpzN (7.2.7)

Above we considered the phase space Ω as being a shell of energy, in particular an n-dimensional sphere.

Most of the time we’re interested in an infinitesimally small section of the sphere, one that represents only a

specific amount of energy E. We can restrict atoms to this particular energy value by assigning some E∗ and

E∗ + δE∗ to bound the specific energy E that we’re interested in. Then,

Ω(E)δE =

∫

E∗<E<E∗+δE

dx1dy1dz1 . . . dzNdpx1
dpy1 . . . dpzN (7.2.8)

represents the shell of energy corresponding to a specific energy level.

Notice that part of the integral in Equations (7.2.7) and (7.2.8) returns the volume of a 3N -dimensional

sphere (there are N sets of 3 positional coordinates x, y, and z. This convention temporarily ignores the mo-

menta terms). Lucky for us, people smarter than us already computed an explicit formula for an n-dimensional

sphere:

Vn(R) =
πn/2Rn

(n2 )!

Here, R is the radius of the sphere. Recall that above we already defined the radius of our sphere as
√

2mE.

This formula will allow us to calculate the volume of a thin shell of momenta space that corresponds to the

total energy at the specific point on the sphere E that we’re interested in.

To begin that calculation let’s break up the integral above (in the manner that I’ve already hinted at):

Ω(E)dE =

(∫

E∗<E<E∗+dE

dx1dy1dz1 . . . dzN

)(∫

E∗<E<E∗+dE

dpx1
dpy1dpz1 . . . dpzN

)

= dV3N +

∫

E∗<E<E∗+dE∗
dpx1

dpy1dpz1 . . . dpzN

The dV3N term is in fact a change because we are looking at the integral on E∗ < E < E∗ + δE which has

an inherent change. Thus, we can compute the total energy at on the particular shell of energy E in momenta

space as

Ω(E) =
dV3N (

√
2mE)

dE

=
d

dE

(
π3N/2(

√
2mE)3N

( 3N
2 )!

)

=
π3N/2[3Nm(2mE)

3N
2 −1]

( 3N
2 )!

=
3Nmπ3N/2R3N−2

( 3N
2 )!

(7.2.9)

where R =
√

2mE is the radius of the sphere.

At this point we shift our attention and ask an interesting question about the collection of particles we’ve

been studying: What is the probability that a particular atom will have a given amount of momentum, p1, in

the z direction? For a single atom system, this probability is proportional to the area of the circular annulus

elevated p1 along the z-axis from the center of the sphere. To compute this we’ll be interested in the area

bounded by two circles which lie along arbitrarily close to one another on the sphere, one of radius R =
√

2mE

and the other of radius r =
√

2m(E + dE). Notice that this new radius r can be equivalently expressed as

r =
√

2mE − p2
1 using the fact that the probability is proportional to the area of the annulus mentioned
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above and the Pythagorean Theorem. Now, we’ll compute the area of this annulus in a similar fashion as the

volume of the sphere itself. Note that since the sphere lived in 3N -dimensional space, the annulus lives in

(3N − 1)-dimensional space (which I think is intuitive enough).

area of annulus

dE
=
dV3N−1(

√
2mE − p2

1)

dE

=
d

dE

(
π(3N−1)/2(

√
2mE − p2

1)3N−1

( 3N−1
2 )!

)

=
π(3N−1)/2[(3N − 1)m(2mE − p2

1)
3N−1

2 −1]

( 3N−1
2 )!

=
(3N − 1)mπ(3N−1)/2r3N−3

( 3N−1
2 )!

(7.2.10)

The probability density of being in the particular annulus (above) is the area of said annulus, Equation

(7.2.10), divided by the total volume of the shell, Equation (7.2.9). Thus,

f(p1) =
area of annulus

volume of sphere

=
(3N − 1)mπ(3N−1)/2r3N−3

( 3N−1
2 )!

(
3Nmπ3N/2R3N−2

( 3N
2 )!

)−1

...

=
R2

r3

(
1− p2

1

2mE

)3N/2

(7.2.11)

Briefly, let’s considering the feasibility of our result. The factor inside the parentheses is taken to an enormous

power, on the order of N . Thus,

1− p2
1

2mE
≈ 1

otherwise, the entire expression in (7.2.11) would vanish. Moreover, notice that

1 ≈ 1− p2
1

2mE
=

2mE − p2
1

2mE
=

(√
2mE − p2

1√
2mE

)2

=
r2

R2
⇒ r ≈ R

and that we can approximate

1− p2
1

2mE
≈ exp

{
− p2

1

2mE

}

for small enough values in the exponent (check for yourself that this is true). Thus, we can make the following

approximation:

R2

r3

(
1− p2

1

2mE

)3N/2

≈ 1

r

(
exp

{
− p2

1

2mE

})3N/2

=
1√

2mE

(
exp

{
− 1

2

(
3Np2

1

2mE

)})

Notice that this is (nearly) a Gaussian distribution with mean zero and standard deviation
√

2mE/3N . The

only thing left to do to afford our probability density for p1 is to normalize this expression:

f(p1;E,N,m) =
1√

2πm(2E/3N)
exp

{
− p2

1

2m

3N

2E

}
(7.2.12)

Alright that was a lot of math, even for me. Let’s take a quick H2O break, maybe grab a snack, and regroup

in 5.
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We’re back. Let’s consider the implications of our derivation above:

1. We were able to solve the momentum distribution for any particle without solving any equations of motion.

2. We’ve found that the momentum distribution is extremely tightly peaked. In fact, most of the momenta

will be found within one standard deviation of the center of the distribution, that is, within
√

2mE/3N

which is tiny compared to the total possible values of momenta,
√

2mE. Intuitively, this result makes

sense: As we increase the number of particles in our system, by the law of large numbers, the average

momentum limits towards a fixed value.

A major implication of our derivation that is deserved of more than just a bullet point is that it affords the

internal energy for an ideal gas. Suppose that we choose to substitute 3N/2E = 1/kBT (do these quantities

have the same physical meaning? i.e., do they have the same units?) to afford an expression for the energy E,

3N

2E
=

1

kBT
⇒ E =

3

2
NkBT =

3

2
RT

which is exactly the familiar representation for the internal energy of an ideal gas.

Another major implication of our derivation is that it affords the ideal gas law. Suppose we want to find

the average amount of (kinetic) energy of the particles in this collection. This is equivalent to calculating the

weighted average of the kinetic energies over all possible momenta (i.e., using the function we just defined):

KEavg =

∫ ∞

−∞

(
p2

1

2m

)
f(p1)dp1

=

∫ ∞

−∞

(
p2

1

2m

)
exp{−p

2
1

2m
3N
2E }√

2πm(2E/3N)
dp1

=
1

2m
√

2πmkBT

∫ ∞

−∞
p2

1exp

{ −p2
1

2mkBT

}
dp1

This integral is not at all trivial and in the lecture slides Dr. Fried omits the entire evaluation because this is a

physical chemistry class and not a vector calculus class. I, however, think the derivation is more than worthy

enough of being shown off in all its glory. Moreover, I’ll integrate the function in more than one way: Firstly,

let’s rearrange the integral above (omitting the constants, for brevity) as follows:

∫ ∞

−∞
p1

(
p1exp

{ −p2
1

2mkBT

})
dp1

Now, allow u = p and dv = p1exp
{ −p21

2mkBT

}
so that we can integrate by parts with du = dp and v =

−mkBT exp{ −p21
2mkBT

}:

∫ ∞

−∞
p1

(
p1exp

{ −p2
1

2mkBT

})
dp1 =

[
− p1mkBT exp

{ −p2
1

2mkBT

}]∞

−∞
−
∫ ∞

−∞
−mkBT exp

{ −p2
1

2mkBT

}
dp

= 0 +mkBT

∫ ∞

−∞
exp

{ −p2
1

2mkBT

}
dp1

The integral that remains is a Gaussian integral and has a known value. The derivation is really cool, involving

a change of variables and some cheeky intuition. I’m not gonna derive it here, but I provide the derivation in

Section ?? if you’re interested. Using this known value, we find

mkBT

∫ ∞

−∞
exp

{ −p2
1

2mkBT

}
dp1 = mkBT

√
2πmkBT =

√
2π(mkBT )3/2

and remembering that I omitted the constants in front of this integral in the first place for brevity, we have
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that

KEavg =
1

2m
√

2πmkBT

√
2π(mkBT )3/2 =

1

2
kBT (7.2.13)

which represents the average amount of energy carried by a translational degree of freedom for a particle. This

result is known as equipartition. Additionally, it agrees with what we know already about the internal energy

for an ideal gas: First, recall that NAkB = R for a single particle. Then, notice that each particle of an ideal

gas has three translational degrees of freedom (in accordance with the three dimensions of motion) so that the

internal energy of a single particle is given as

U =
3

2
RT

and the internal energy for n moles of an ideal gas is given by

U =
3

2
nRT

Awesome!

Before utilizing this result, here’s another way of evaluating the integral that gave us some trouble: Let’s

start by rearranging, this time in a slightly different way:

∫ ∞

−∞
p2

1exp

{ −p2
1

2mkBT

}
dp1 =

∫ ∞

0

p1exp

{ −p2
1

2mkBT

}
2p1dp1

Above we shifted the lower limit of integration up to 0 since the function is completely nonnegative. At the

same time, we doubled the value of the integral to account for negative momenta which are lost when we begin

integration at 0. This factor of 2 was brought inside the integral, affording the 2p1dp1 term. At this point,

we can make the variable substitution u = p2
1/(2mkBT ) so that du = 2p1dp1/(2mkBT ) which simplifies our

integral as ∫ ∞

0

p1exp

{ −p2
1

2mkBT

}
2p1dp1 =

∫ ∞

0

(2mkBTu)1/2e−u(2mkBTdu)

which can be evaluated with the Gamma function:

∫ ∞

0

(2mkBTu)1/2e−u(2mkBTdu) =
√

2(mkBT )3/2Γ

(
3

2

)

= (2mkBT )3/2

√
π

2

=
√

2π(mkBT )3/2

Plugging this result back into our original expression:

KEavg =
1

2m
√

2πmkBT

√
2π(mkBT )3/2 =

1

2
kBT

which agrees exactly with our result from before.

Now, onto deriving the ideal gas law. Somehow we need to relate the average amount of energy we

considered above to the pressure and volume of a container holding an ideal gas. Let’s consider the momentum

of a particle particle in this collection: Pressure is a result of molecules colliding with a surface (in this case the

wall of the container). For an ideal gas, the collisions will be entirely elastic so that the change in momentum

will be given by:

∆~p = ~pf − ~pi = 2~p

Since collisions are elastic and the components of ~pf are directed antiparallel to the components of ~pi, ~pf = −~pi
which explains the result above. Considering a short time interval where we measure the number of particles
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which collide with the wall, only those particles which are within

∆~x = ~v∆t =
~p

m
∆t

will hit the container and be transfer momentum. Then, the total momentum transfer to the wall is given by

∆~ptot =

∫ ∞

0

f(p)

(
N

V

)(
~p

m
∆t

)
(Area)2~pd~p

where f(p) is the probability distribution of the momentum we derived above, N/V accounts for the total

number of particles per volume of the container (as to not scale our answer by an unnecessary factor), Area is

the area of the container which particles are colliding with, 2~p is the change in momentum we illustrated above,

and we’re integrating over all particles with momenta in the direction of the wall (hence only positive values.

We could have elected to include “negative” momenta which aren’t directed toward the wall and range from

negative to positive infinity. This point is remedied later). Before evaluating this integral recall that

Pressure =
Force

Area
=

∆~p

∆t×Area

so that our integral and can be rearranged and evaluated as follows:

∆~ptot
∆t×Area

=
2N

V

∫ ∞

0

f(p)
(~p)2

m
d~p

P =
2N

V

(
1

2
kBT

)
=
NkBT

V

PV = RT

In the second step we obtain the same result as we did in the prior derivation. Note that although there isn’t a

factor of one-half in the integral above, we’re only integrating over half of the support as we did in the derivation

for Equation (7.2.13) hence the factor of one-half in the answer.

Sam! This isn’t the ideal gas law! Might I say that that is an apt observation. Recall that the momentum

distribution we’ve been considering up until this point was for a single particle. So, for a mole of particles, we

have that PV = nRT as desired.

7.3 The Canonical (NVT) Ensemble

The canonical ensemble describes a system that can exchange heat with a thermal reservoir (in other words,

the ensemble is in thermal equilibrium with the reservoir) and therefore energy is not conserved in the system.

Therefore, microstates will differ in energy. We can justify this observation by saying that lower energy mi-

crostates have “donated” their energy to the reservoir while high energy states have “borrowed” energy instead.

Moreover, each replica in the ensemble has a fixed number of particles and fixed volume. As before, our goal in

constructing an ensemble is to determine the appropriate weight (or contribution) that each microstate plays

in the particular macrostate of the system.

Similar to the microcanonical ensemble we’ll be interested in finding the weights of each microstate which

maximize S ∼ lnW given

W (Ni;A) =

(
A

N1, . . . ,Nm

)
=

A!

N1! . . .Nm!
, lnW = A lnA−

m∑

i=1

Ni lnNi

with
∑n
i=1 Ni = constaint. This time, however, instead of maximizing lnW we’ll explicitly maximize S =

kB lnW and instead of solving for the extensize variables Ni (which sum to A) we will solve for the intensive

microstate probabilities, pi (which sum to 1).
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In addition, since the energy is not being conserved within the ensemble, we have a new constraint,

U ≡
m∑

i=1

piEi (7.3.1)

where U is the total internal energy of the system, Ei is the ith energy of the particle in the ensemble, and pi

is the probability particle i obtains that energy. By the first law of thermodynamics, all of the energies in the

system must sum to a constant, in particular the total internal energy of the system. If we were to express this

energy constraint as an extensive variable, that is, representing the extensive energy of the entire ensemble5,

we have

AE =

m∑

i=1

ApiEi ⇒ ET =

m∑

i=1

NiEi

as our second constraint.

With these two constraints defined and keeping in mind that we are trying to maximize S = kB lnW , our

system of Lagrange multipliers becomes

∇
(
kB lnW

)
= λ

( m∑

i=1

pi

)
+ β

( m∑

i=1

piEi

)

where the right-hand side is the entropy (which we are trying to maximize), the left hand side contains those

terms which constrain the function, defined above, and we are differentiating all terms with respect to the ith

probability, pi. Before continuing recall that we can express the entropy as Gibbs entropy, given as

S = −kB
m∑

i=1

pi ln pi

so that we can evaluate the Lagrangian equation above, considering just a single pi at first and generalizing

after:

∇
(
− kBpi ln pi

)
= ∇

(
λpi
)

+∇
(
βpiEi

)

−kB
(

ln pi +
pi
pi

)
= λ+ βEi

ln pi + 1 =
λ+ βEi
kB

pi = exp

{−kB + λ+ βEi
kB

}
(7.3.2)

Here we can use on of our constraints. We know that the sum of all the probabilities must be 1 (otherwise we

wouldn’t have a probability space) and therefore

1 =

m∑

i=1

exp

{−kB + λ+ βEi
kB

}

= exp

{−kB + λ

kB

} m∑

i=1

exp

{
βEi
kB

}

= Qexp

{−kB + λ

kB

}

5This is not the same as the total internal energy because U is representative of the system and surroundings, not just the
system.
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where Q is the canonical partition function6. For now, though, we’ll use it to isolate λ:

1

Q
= exp

{−kB + λ

kB

}

ln

(
1

Q

)
=
−kB + λ

kB

− lnQ =
−kB + λ

kB

λ = −kB lnQ+ kB

We can plug this result for λ back into Equation (7.3.2) to afford an expression for the ith probability, pi, in

terms of the unknown β:

pi = exp

{−kB − kB lnQ+ kB + βEi
kB

}

= exp

{−kB lnQ+ βEi
kB

}

=
exp
{
βEi
kB

}

Q
(7.3.3)

Equation (7.3.3) looks promising, as it expresses a Boltzmann factor7 normalized by some partition function

Q.

All that’s left is for us to find the parameter β. So, we’ll return to entropy, in particular the Gibbs

entropy:

S = −kB
m∑

i=1

pi ln pi

= −kB
m∑

i=1

pi ln

(
exp
{
βEi
kB

}

Q

)

= −kB
m∑

i=1

pi

(
βEi
kB
− lnQ

)

= −β
m∑

i=1

Eipi + kB lnQ

m∑

i=1

pi

= −βU + kB lnQ (7.3.4)

Taking a brief detour back into the world of classical thermodynamics, recall that our definition for a differential

amount of internal energy in a system is dU = TdS − PdV so that at a constant volume (because each replica

in the ensemble has a constant volume by the definition of our system), (∂U/∂S)V = T . Rearranging Equation

(7.3.4) and utilizing this derivative allows us to solve for β:

S = −βU + kB lnQ

U = −S
β

+ kB lnQ

(
∂U

∂T

)

V

= T = − 1

β

β = − 1

T

A-ha! Now, we can write down our results for the canonical ensemble:

6We’re sort of jumping the gun here since we haven’t yet found β. Not to fear, though, we’ll determine it later.
7A Boltzmann factor is an expression given as e−βEi . This is the most general expression. Particular examples include those

expressions in the numerous ensembles we’ll consider.
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1. Q =

m∑

i=1

e−Ei/kBT is the canonical partition function.

2. pi =
1

Q
e−Ei/kBT is the Boltzmann factor for that canonical ensemble.

3. S =
U

T
+ kB lnQ is the entropy of the canonical ensemble

Let’s try and manipulate our expression for entropy to... make it nicer, I suppose. Recall the Helmholtz free

energy, defined as A = U − TS8. With a little bit of algebraic gymnastics we find that

A = −kBT lnQ

Hopefully, this is a satisfying result because it is directly analogous to our result for entropy of the microcanonical

ensemble where S = kB ln Ω. Also, hopefully this makes some sense because for the microcanonical ensemble,

a.k.a. the NVE ensemble, the entropy is an indicator of spontaneity since the system is isolated. Similarly, for

the canonical ensemble, or the NVT ensemble, the Helmholtz free energy is an indicator of spontaneity since

it is a closed system.

So we’ve got the Helmholtz free energy, but what about an expression for the internal energy of a system?

First, recall Equation (7.3.1) which gives us an expression for the internal energy in terms of some energies and

probabilities. However, now we have those probabilities:

U =

m∑

i=1

piEi

=

m∑

i=1

(
exp
{
βEi
kB

}

Q

)
Ei

=
1

Q

m∑

i=1

Eie
−Ei/kBT

Here we’re gonna make the following (absolutely horrendous) substitution,

e−Ei/kBT =
d

d(1/T )

[
e−Ei/kBT

](−kB
Ei

)

which must be true by the chain rule. Thus,

U =
1

Q

m∑

i=1

Eie
−Ei/kBT

=
1

Q

m∑

i=1

−kB
(

d

d(1/T )

[
e−Ei/kBT

])

= −kB
Q

d

d(1/T )

( m∑

i=1

−Ei/kBT
)

= −kB
Q

d

d(1/T )

(
Q
)

This next substitution isn’t as bad. Note that

d lnQ(x)

dx
=

1

Q

dQ(x)

dx

and since the partition function Q is a function of temperature we can rewrite our expression for the internal

8We consider the Helmholtz free energy here because it is an indicator of spontaneity for constant volume and constant
temperature systems. Wait... these are the conditions of the canonical ensemble!
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energy to afford

U = −kB
Q

d

d(1/T )

(
Q
)

= −kB
d lnQ

d(1/T )

I don’t know what’s going on with all these weird chain rule shenanigans but this is the last one we’ll use to

simplify the derivative. Note that

dy(x)

d(1/x)
= − 1

1/x2

dy(x)

dx
= −x2 dy(x)

dx

so that we can finally establish the following relationship for the internal energy of the canonical ensemble:

U = kBT
2 d lnQ

dT
(7.3.5)

Magnets: A Case Study

Here we’ll consider a simple, one-dimensional model of a magnet. Suppose we have a one-dimensional lattice

made up of N magnetic dipoles, each of which are caused by the spin of an electron, either up (+1) or down

(+1). The magnetization M of the magnet is M = µB(N↑ − N↓), where N↑ is the number of spins pointing

up, N↓ is the number of spins pointing down, and µB is the Bohr magneton, the unit a magnetic dipole has.

Let’s consider a small magnet such that N = 6. How many microstates does the lattice have? How many

associated macrostates are there corresponding to a particular magnetization? First we’ll address the number

of microstates. At each point in the lattice an electron could be spinning one of two ways, either up or down.

So, for 6 lattice points, there are 26 = 64 associated microstates. To connect this to the number of macrostates,

notice that the arrangement of up-spins and down-spins is binomially distributed so that for a a number k of

up-spins in the lattice, there are
(

6
k

)
corresponding microstates with the same overall magnetization. Below is

a table illustrating all of our choices for k and the corresponding macrostate (magnetization):

Number of up-spins, k # Microstates
(

6
k

)
Magnetization, M

0 1 −6µB

1 6 −4µB

2 15 −2µB

3 20 0µB

4 15 2µB

5 6 4µB

6 1 6µB

Amazing! Let’s complicate the situation. Suppose that we apply a magnetic field B to the lattice of

charges. The interaction between the field and spins pointing in the same direction is favorable, whereas those

pointing in opposite directions are unfavorable. We can model the energy, E, schematically as

E = −BM

Given an applied magnetic field of +B in the up-direction, write down an expression for the canonical partition

function, Q, of the system. Okay! Luckily, most of the work has already been done. We know how many

macrostates are present, the number of microstate associated to each macrostate, and even the magnetization
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of each macrostate. Building the partition function becomes child’s play. In fact, I’ll do it with my eyes closed:

Q =

6∑

i=1

gie
−Ei/kBT

= e6µBB/kBT + 6e4µBB/kBT + 15e2µBB/kBT + 20 + 15e−2µBB/kBT + 6e−4µBB/kBT + e−6µBB/kBT

The general form for each term in this series is given above in the summation, but I’ll reiterate it here. For a

particular macrostate, its contribution to the partition function takes the form

(
6

k

)
e−(−BMk)/kBT

where k is the number of up-spins in the lattice, and Mk is the associated magnetism with k up-spins. Like I

said before, we computing all of these values previously. Although our expansion for Q is technically correct,

oftentimes we define the ground state energy of the lattice to be zero such that Q can be rewritten as

Q = 1 + 6e2µBB/kBT + 15e4µBB/kBT + 20e6µBB/kBT + 15e8µB/kBT + 6e10µB/kBT + e12µB/kBT

where k = 6 up-spins is chosen to be the ground state energy since there are only favorable interactions.

With the partition function, write down an expression for the probability that the magnet will be in its

ground state with an applied magnetic field, +B. Above we just defined the ground state to be when k = 6 is

the number of up-spins. Then, the probability of being in the ground state becomes

P (ground state) =
1

Q

with Q acting as the partition function.

Now, sketch a plot of magnetization of the system as a function of temperature. COME BACK TO PLOT

THIS IN PYTHON

Suppose we wish to generalize our one-dimensional model to including N magnetic dipoles, where N

is some large number. If the magnet has a total magnetization M , how many microstates are there for the

magnet to exist in? Express this number in terms of the known quantities, N , M , and µB . Initially, one might

think that the number of microstates is given by W = 2N , at least that’s what I thought initially. However,

note that we’re being asked about some fixed magnetization so that we only care about a subset of the 2N

microstates with a particular magnetization M . This magnetization will depend on the arrangement of up-spins

and down-spins in the lattice, given by the multinomial coefficient,

W =

(
N

N↑N↓

)
=

N !

N↑!N↓!

The challenge then becomes expressing the number of up-spins and down-spins in terms of the observables. To

do this, first notice that it’s required that N = N↑ +N↓. Moreover, keep in mind that we’re given

M = µB(N↑ −N↓)

which allows us to substitute for either of N↑ or N↓ into the expression for the total number of dipoles. Doing
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this for N↑,

N = N↑ +N↓

=

(
M

µB
+N↓

)
+N↓

N − M

µB
= 2N↓

N↓ =
N

2
− M

2µB

Similarly, we can show that

N↑ =
N

2
+

M

2µB

so that our final expression for the number of microstates in this lattice becomes

W =
N !

N↑!N↓!
=

N !(
N
2 + M

2µB

)
!
(
N
2 − M

2µB

)
!

An important feature of magnets we’ve ignored until this point is that spins interact with their nearest

neighbor as well as any applied magnetic field. When two adjacent spins point in the same direction, a favorable

interaction is formed and contributes −J to the overall energy of the microstate. Similarly, when adjacent

spins point in opposite directions, an unfavorable interaction occurs which contributes +J to the energy of

the microstate. Consider a system of N = 3 dipoles and write down an expression for the canonical partition

function in the absence of a magnetic field. To do this, notice that the only energy being contributed to the

microstate is coming from nearest neighbor interactions. So, all we need to determine is the energy coupling

of each microstate. Since 3 is a pretty small number, we can just draw each microstate out and determine the

coupling energy associated with each:

Microstate ↑↑↑ ↓↑↑ ↑↓↑ ↑↑↓ ↓↓↑ ↓↑↓ ↑↓↓ ↓↓↓
Energy −2J 0 +2J 0 0 +2J 0 −2J

Thus, our partition function can be expressed as

Q = 2e−2J/kBT + 4 + 2e2J/kBT

which can be rewritten by taking the ground state to be when all three dipoles are facing in the same direction

to be

Q = 2 + 4e2J/kBT + 2e4J/kBT

Lastly, a quick note on the ground state configuration of the lattice we described above with N = 3.

Regardless of the presence of an external magnetic field, we would expect the ground state configuration of

the material to be where all of the dipoles are pointing in the same direction due to favorable nearest-neighbor

interactions. In the absence of a magnetic field, this direction is effectively chosen at random. In contrast, when

an external magnetic field is present we’d expect the lattice to point in the same direction as the magnetic field

because this would minimize the energy of the system. Either way, energy is minimized (and the ground state

is achieved) when all dipoles are pointing in the same direction.

Two-State Systems: A Case Study

Two-state systems can be described by the equilibrium

D −−⇀↽−− N
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where N is the native state and D is the denatured state. Suppose that we have a two-state system in which the

energy difference between the states is hν. Write down a partition function for a single molecule of this type

and calculate its internal energy. Using the general form for the canonical partition function and also allowing

∆E = hν in this case, we have

Q = g1e
−E1/kBT + g2e

−E2/kBT

= 1 + e−hν/kBT

as the canonical partition function for this system. Above I allowed g1 and g2 to represent the multiplicities

of each state, the native and denatured forms of the molecule. However, there is no preference associated with

either state (or just none that we are given) so that g1 = g2 = 1. Moreover, I allowed E1 = 0 to represent the

ground state of the system and E2 = ∆E = hν to be the energy difference between the denatured and native

states. To calculate the internal energy of the system, recall Equation (7.3.5) which gives us the internal energy

in terms of the partition function. Then,

U = kBT
2 d lnQ

dT
= kBT

2 d

dt

[
ln
(

1 + e−hν/kBT
)]

= kBT
2

(
hν

kBT 2 e
−hν/kBT

1 + e−hν/kBT

)

=
hνe−hν/kBT

1 + e−hν/kBT

This is the internal energy of the system. With this expression, compute the heat capacity at a constant volume

for this molecule. Recall Equation (3.2.2) which relates the internal energy to the heat capacity at a constant

volume. Then, the calculation is trivial:

CV =

(
∂U

∂T

)

V

=

(
∂

∂T

[
hνe−hν/kBT

1 + e−hν/kBT

])

V

=

(
1 + e−hν/kBT

) (
h2ν2

kBT 2 e
−hν/kBT

)
−
(
hνe−hν/kBT

) (
hν

kBT 2 e
−hν/kBT

)

(1 + e−hν/kBT )2

=

h2ν2

kBT 2 e
−hν/kBT + h2ν2

kBT 2 e
−2hν/kBT −

(
h2ν2

kBT 2 e
−2hν/kBT

)

(1 + e−hν/kBT )2

=
h2ν2e−hν/kBT

kBT 2(1 + e−hν/kBT )2

This is the constant-volume heat capacity of the molecule.

Let’s now consider two different types of two-state systems that operate on very different energy levels.

Suppose that the first system is the electronic absorption between a singlet ground state to a singlet excited

state in which the states differ by the energy of a green photon with λ = 500 nm. Additionally, suppose that

we consider another system which represents the spin of an 1H nucleus in the presence of a 7 T magnetic field9

with a resonant frequency of 300 MHz. In either case, the probability of occupying the ground state, where

Egs = 0, is given by

P (ground state) =
1

1 + eEgs/kBT

where Egs is to be determined with the given information. Firstly, for the ground state and excited state

separated by a green photon, we have that the energy difference is given by

E = hν =
hc

λ
=

(6.626× 10−34 J/s)(2.998× 108 m/s)

500× 10−9 m
= 3.97× 10−19 J

9The SI units of a magnetic field are “teslas,” denoted by T.
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and therefore the probability of being in the ground state is given by

P (ground state) =
1

1 + e−hν/kBT
=

1

1 + 1.15× 10−42
= 1

Now, for the system representing the spin of a hydrogen nucleus we have the energy difference between the

ground state and excited state is given by

E = hν = (6.626× 10−34 J/s)(300× 106 s−1) = 1.99× 10−25 J

so that the probability of being in the ground state becomes

P (ground state) =
1

1 + e−hν/kBT
=

1

1 + 1
=

1

2

Now we consider an ensemble of N such two-state molecules. The rate constant for molecules to get

excited is kgs→es = I(ν)B12 where I(ν) is the intensity of incident light at the resonant frequency and B12

is the “Einstein absorption coefficient.” Moreover, the rate constant for molecules to relax is keq→gs = A21

where A21 is the “Einstein coefficient for spontaneous emission.” In a photostationary state, the system reaches

an equilibrium where the number of molecules in the ground state becomes constant. At the photostationary

state, derive an expression for the equilibrium constant K = A21/B12. We’ll start by expressing this two-state

system with a reaction scheme:

Ngs −−⇀↽−− Nes

where gs and es represent the ground state and excited state. Then, the rates of formation are given by,

dNgs
dt

= −I(ν)B12Ngs +A21Nes

dNes
dt

= −dNgs
dt

= I(ν)B12Ngs −A21Nes

At the photostationary state, the rates of formation are zero so that we’re left with the relatonship

dNes
dt

= 0 = −I(ν)B12Ngs +A21Nes

I(ν)B12Ngs = A21Nes

A21

B12
= I(ν)

(
Ngs
Nes

)

Notice that Ngs and Nes are the proportion of the total number of molecules, N , which are in the ground states

and excited states, respectively. So, we can rewrite the expression above as

A21

B12
= I(ν)


N

1
1+e−hν/kBT

N e−hν/kBT

1+e−hν/kBT




= I(ν)ehν/kBT

which is the “equilibrium constant” for the photostationary state.
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7.4 The Isothermal-Isobaric (NPT) Ensemble

7.5 The Grand Canonical Ensemble

7.6 Molecular Ensembles

Our discussion on energy levels makes the canonical ensemble relatively simple to write down for discrete sys-

tems, that is, systems in which particles can occupy a countable number of states10. How might we model

continuous systems, such as those for an ideal gas? In Section ?? we derived some key facts about the mi-

crocanonical ensemble for the continuous case of an ideal gas; here we’ll try to do the same for the canonical

ensemble.

Recall that our partition function for the canonical ensemble as its discretized was derived as

Q(N,V, T ) =

N∑

i=1

e−Ei/kBT

for a system of N particles. The corresponding expression in the continuous case will be expressed as an

integral:

Q(N,V, T ) =

∫
e−H/kBT d~x1

. . . d~xNd~p1 . . . d~pN (7.6.1)

where d~xi = dxidyidzi and d~pi = dpxidpyidpzi are the differential coordinates and momenta of the particle

respectively, and H is the Hamiltonian11 Already we can see how deriving an expression for the partition

function in the continuous case will be more difficult: Notice that Equation (7.6.1) has units, in particular, it

has units of action3N , given by (position×momentum)3N . In other words, each of the differential terms dxi

and dpi contributes a unit of action to the expression and we have 3N of those terms in total, hence the power

of 3N . Although we’ve already noticed an issue, using the canonical ensemble to derive results about an ideal

gas will be exceedingly easier than using the microcanonical ensemble.

We’ll start by rewriting Equation (7.6.1):

Q(N,V, T ) =

∫
e−H/kBT d~x1

. . . d~xN . . . d~p1 . . . d~pN

=

∫
e−(KE+PE)/kBT d~x1

. . . d~xN . . . d~p1 . . . d~pN

=

∫
e−PE/kBT d~x1

. . . d~xN

∫
e
−
(∑N

i=1

m~v2i
2kBT

)
d~p1 . . . d~pN

=

∫
(1)dV1

. . . dVN

∫
e
−
(∑N

i=1

~p2i
2mkBT

)
d~p1 . . . d~pN

= V N
∫
e
−
(∑N

i=1

~p2i
2mkBT

)
d~p1 . . . d~pN (7.6.2)

In line 4 we substituted dxdydz = dV for all N triples in the integral for the potential energy, affording

V N . Additionally, we expressed the kinetic energy in terms of momenta instead of velocity. To see why, we’ll

manipulate the kinetic energy integral below:

∫
e
−
(∑N

i=1

~p2i
2mkBT

)
d~p1 . . . d~pN =

∫
e
−
(
~p21+~p21+···+~p2N

2mkBT

)
d~p1 . . . d~pN

=

∫
e
−
(

~p21
2mkBT

)
d~p1

∫
e
−
(

~p22
2mkBT

)
d~p2 · · ·

∫
e
−
(

~p2N
2mkBT

)
d~pN

10The number of states may be countably infinite, yet countable nonetheless.
11The Hamiltonian is an operator which corresponds to the total energy of a system, including both the kinetic and potential

energy. This operator comes up much more often in quantum mechanics where I’ll provide a larger discussion on it. For now,
however, we’ll use to to represent the total energy of a system.
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In the last line we have a succession of Gaussian integrals, each of which has a mean of zero and variance

mkBT . Furthermore, they’re unnormalized so that they’ll evaluate to the normalization factor. Continuing

with integration,

∫
e
−
(

~p21
2mkBT

)
d~p1

∫
e
−
(

~p22
2mkBT

)
d~p2 · · ·

∫
e
−
(

~p2N
2mkBT

)
d~pN =

√
2πmkBT

√
2πmkBT . . .

√
2πmkBT

= (2πmkBT )3N/2

Thus, our partition function for the canonical ensemble of an ideal gas is given by

Q = V N (2πmkBT )3N/2

But Sam! You forgot about the issue that this partition function has units! That is an excellent point. So,

how might we remedy this?

Well, we need a quantity with units of action, preferably one that can be expressed as position times

momentum. This quantity is given exactly by the Heisenberg uncertainty principle, which asserts that ∆x∆p ∝
h, that is, the product of the uncertainty in the position and momentum of a particle is directly proportional to

Planck’s constant. So, dividing our expression by h3N will afford a dimensionless number. Hence, our partition

function for the molecular ensemble is

Q =
V N (2πmkBT )3N/2

h3N
(7.6.3)

Interestingly, if you consider the quantity
√

2πmkBT/h, you’ll notice that it has units of (length)−1,

encouraging us to rewrite the partition function in a new way, using a wavelength λ,

Q =

(
V

λ3

)N
(7.6.4)

where λ = h/
√

2πmkBT is the De Broglie or thermal wavelength, and it expresses how much “space” a particle

of an ideal gas occupies.

The other problem associated with our partition function is more subtle than the last, however, it will

become more clear when we consider the entropy of the ensemble. Recall from Section ?? our expression for

the entropy of a particle within the canonical ensemble:

S =
U

T
+ kB lnQ

=

7.6.1 Molecular Ensembles in Two Dimensions

ff

7.7 The Maxwell-Boltzmann Distribution

The Maxwell-Boltzmann distribution is a probability distribution that gives the provides the probability of

finding a particle at some speed as a function of temperature. The density function for this distribution is,

f(v) = 4π

(
m

2πkBT

)3/2

v2e
− 1

2

(
mv2

kBT

)
, −∞ < v <∞ (7.7.1)
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7.8 Information Theory Applied to Statistical Mechanics

Information theory is the study of data quantification, storage, and communication, and is at the intersection of

myriad scientific fields, one of which is statistical mechanics. The key measure of information theory is Shannon

entropy12 which quantifies the amount of uncertainty involved in the outcome of some process. For example,

there is more entropy associated with rolling a fair, 6-sided die than there is tossing a fair coin since there are

more possible outcomes for rolling the die. Additionally, we might also say that the outcome of rolling the die

offers more information about the system since there is more entropy associated with each outcome.

The idea of “information content” in an outcome is one of the core ideas of Shannon entropy. To restate in

more general terms what I said above, if we are observing a process and a highly likely event occurs, the outcome

carries very little information. Inversely, if a very unlikely event occurs, the outcome is much more informative.

Claude Shannon (the same guy who “Shannon entropy” is named after) posited that the information of an

event must meet a specific set of axioms, all of which are satisfied by defining the information content as

I(x) = − log2(px) (7.8.1)

where px is the probability of event x occurring.13

Insofar as we’ve discussed entropy it’s been constrained to the context of thermodynamics which, while

that’s good considering this is a thermodynamics class, after all, doesn’t offer other, possibly more helpful, ways

of building an intuition behind what the entropy of a system characterizes. To provide a complete connection

from information theory and some computer science to thermodynamics, we’ll motive our discussion by asking

the simple question: what exactly causes our computers to heat up?

7.8.1 Entropy as Uncertainty

Within the study of information theory, the Shannon entropy of an outcome is defined as the expectation of

the information, written

H(x) = 〈I(x)〉 = −
N∑

i=1

pi log2(pi) (7.8.2)

where the outcome x consists of N particles. To quickly provide some intuition behind how we could use this

formula, consider the entropy of the alphabet. Suppose that we choose letters at random. Assuming that each

letter of the alphabet has an equal probability of being chosen, the entropy is given by

Halphabet = −
26∑

i=1

1

26
log2

(
1

26

)
= log2 26 ≈ 4.7 (7.8.3)

Interestingly, and potentially obviously depending on how much one has payed attention during lecture,

the Shannon entropy of a particular outcome is exactly the same as the Gibbs entropy (up to a constant), which

is derived directly from the Boltzmann equation, S = kB lnW . Note that,

S = kB lnW = −kB
N∑

i=1

pi ln pi = −kB ln 2

N∑

i=1

pi

(
ln pi
ln 2

)
= −kB ln 2

N∑

i=1

pi log2 pi = (kB ln 2)H (7.8.4)

Let us suppose we didn’t recognize this equivalence and instead used the Shannon entropy to determine

the values of the pi which will maximize the entropy. As we saw with the definition of information content in

Equation (7.8.1) , the information is monotonically decreasing as the probability of any one outcome decreases.

12I’ll try my best to distinguish between Shannon entropy and thermodynamic entropy throughout this section but you’ll probably
just have to figure out which one I’m talking about based on context clues. I believe in you!

13The choice of base for the logarithm is arbitrary and will only effect the units in the end. The most common choice is base 2
which affords units of “bits”. Another common choice is to use the natural base e, affording units of “nats”.
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In other words, the Shannon entropy for a probability distribution will increase as the probability of any outcome

from the distribution decreases. Conveniently, the postulate of a priori equal probabilities with pi = 1
Ω where

Ω is the sample space, satisfies this property. Then, the Shannon entropy is given by

H = −
Ω∑

i=1

1

Ω
log2

1

Ω
(

1

kB ln 2

)
S = log2 Ω

S = kB ln Ω (7.8.5)

which agrees exactly with the Boltzmann equation.

The equivalence illustrated in Equations (7.8.4) and (7.8.5) prompts us to rethink (if not already having

thought) of entropy as uncertainty. For example, suppose we are interested in a gas contained within a box.

All of the particles have some well-defined position and momentum and if we knew all of these position and

momenta there would only be one microstate possible for the gas and therefore zero entropy. Clearly, though,

the entropy of a gas is nonzero. It’s nonzero exactly because we don’t know the positions and momenta of the

particles. Hence, entropy is not necessarily a property of the gas but instead a property of our knowledge of

the gas.

7.8.2 The Irreversibility of Information Storage

In the preceding section we made an informal connection between thermodynamic entropy and Shannon entropy,

relying on an observation as opposed to a rigorous derivation. This connection, however, can not only be shown

rigorously but also proven to be an equivalence. That is, showing that thermodynamic entropy and Shannon

entropy are exactly the same. This result will require slightly more work...

Recall the question that sparked our discussion regarding computers and their tendency to heat up as we

use them. Clearly, some energy is being dissipated by our machines during this process. In 1961, the physicist

Rolf Landauer was interested in minimizing this energy loss and considered the existence of a computer which

could operate with no loss of energy. He considered a model of a bit14 with a double-well, illustrated in Figure

7.1. The first question Landauer posited was whether or not we could switch the sign of the bit from 0 to 1

without expending any energy.

Figure 7.1: Double well model of bit storage.

Seemingly, the answer is yes. Following the scheme in Figure 7.2, attaching a counterweight to the ball

representing our bit and giving an infinitesimal nudge to the counterweight will allow us to switch the sign of

the bit. Another infinitesimal nudge to stop the counterweight stops the ball, affording a reversible reaction

without the expenditure of energy.15

14A “bit” is the unit of storage for a system using binary. That is, a binary integer represented by either 0 or 1 requires 1 bit of
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Figure 7.2: Double well model of bit storage using pulleys to avoid expending energy to switch the sign of a
bit.

At this point we need to address the issue of knowing the initial state of the bit. Above, we naively

assumed that every time we go to switch the sign of the bit we “guess” correctly, in that we don’t try and

switch the state of a 0 bit to 0. So, can our pulley system address the issue of not knowing the initial state of

the bit? The answer is no.

In particular, the answer is no for any sort of over-engineered apparatus you can think of. The reason is

that we are using Newton’s Laws to switch the sign of the bit (the infinitesimal nudge). Recall that Newton’s

Laws are time-invariant so that anything we do in the forward direction of time must be equally possible and

well-defined in the reverse direction of time. Swapping a 1 to a 0 corresponds to swapping a 0 to a 1 in the

reverse direction. So, a function or process which can simultaneously swap a 1 and a 0 to a 0 is clearly not

invertible. If the final state of the system is a 0 how can we be sure of the initial state (assuming that we’ve

created the machine I’ve already said was impossible to create)?16

The calculation described above, swapping a bit regardless of whether it is a 1 or a 0 to a 0, is performed

all the time by computers. How? Well, the process is fairly straightforward if we’re allowed to dissipate energy.

For example, if there is friction in our double-well model, the process could involve smacking a mallet on the

“1” side with enough energy to knock the bit down the well and over the adjacent hill. If there is no bit present

on the 1 side, the 0 remains a 0. If there is a bit present, the 1 rolls up the hill and is slowed by friction,

ultimately resting in the well corresponding to 0. Note that this wouldn’t work if friction we’re not present

since the ball would have enough energy to roll back up the hill and arrive in the “1” well again. To address

the question of how realistic a system like this is, suppose that the ball representing our bit is stored in the

spin of a magnet on some magnetic tape. The mallet, then, may be an external magnetic field. No matter how

you imagine our information to be stored, we arrive at the conclusion that erasing energy requires energy to be

dissipated as heat, also known as Landauer’s principle.

Erasing information is an essential step in computation; every time information is stored the corresponding

information which existed there previously is erased. Take, for example, what I’m writing now. “ ” contains

some information, it’s meaningless, but it’s something. “1” now it contains new information, potentially more

meaningful to you and I. In any case, the information stored in the empty space was erased upon the addition

of the 1.

The key element to showing that the erasure of information is impossible without the loss of energy was

the reversibility of the laws of physics. Thus, thermodynamic entropy increases when information is discarded.

The connection between thermodynamic entropy and information entropy has been pushed further by scientists

asking question such as, “what is the minimum amount of energy required to perform a computation?” More

generally, what are the limits of computing? This is getting more into the realm of computer science than I

storage.
15If I may interject to comment on the setup of our apparatus. Clearly, using counterweights and pulleys to store information

in a computer is unrealistic. This, however, is a thought experiment and so the plausibility of our setup is of no concern. That’s
an issue for the engineers.

16More technically you might say that we require an invertible function which is also not injective. Even writing this down
makes me fear the NSA is listening and is going to have me off’d. A function is invertible if and only if it is injective. So, the
required function to make our imaginary apparatus work is nonsense!
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care for, so those answers will be relegated to another time.

7.8.3 Maxwell’s Demon

With our newly established expertise in information theory we can tackle one of the most famous and vexing

paradoxes regarding entropy, invented by James Maxwell in 1867. As originally postulated, the paradox is

stated as follows:

... if we conceive of a being whose faculties are so sharpened that he can follow every molecule in its

course, such a being, whose attributes are as essentially finite as our own, would be able to do what

is impossible to us. For we have seen that molecules in a vessel full of air at uniform temperature

are moving with velocities by no means uniform, though the mean velocity of any great number of

them, arbitrarily selected, is almost exactly uniform. Now let us suppose that such a vessel is divided

into two portions, A and B, by a division in which there is a small hole, and that a being, who can

see the individual molecules, opens and closes this hole, so as to allow only the swifter molecules

to pass from A to B, and only the slower molecules to pass from B to A. He will thus, without

expenditure of work, raise the temperature of B and lower that of A, in contradiction to the second

law of thermodynamics.

In layman’s terms, we can imagine a container of gas with a partition in the middle separating sides A and

B, each of which have an equal amount of energy contained within them on average. A “demon” observes the

molecules on both sides and allows molecules with an above average-velocity to pass into side A while only

allowing the below average-velocity particles to stay on side B, all while dissipating very little energy compared

to that gained by the system upon establishing an energy gradient. Thus, we’re left with a box that has an

energy gradient between the two sides, with A having particles with an average energy greater than that of

the average energy of the particles on side B. Since the box started with a uniform energy across the partition

separating sides A and B we’ve seemingly violated the second law of thermodynamics.

To prove that this situation does not in fact violate the second law of thermodynamics we’ll invoke

Landauer’s principle. In order for the demon to allow the molecule to pass through the partition it must

first acquire some information about the particle, whether it be the speed, momentum, or energy. Then, to

accurately judge which side the next particle should belong to the demon must erase the information previously

stored about the speed, momentum, or energy to make space for the corresponding information of the new

particle. Discarding the previously held information immediately causes an increase in entropy, as we’ve seen.

Moreover, the demon cannot store any information indefinitely, implying that the storage of any information

regarding the system of gas particles ultimately causes an increase in entropy.17

This thought experiment clarifies why information entropy is equivalent to thermodynamic entropy. Sup-

pose that the demon described above also kept a finite tape of 0’s in his back pocket. For every bit of information

he gathers about a particle approaching the partition, he may record the info on the tape with either a 1 or a 0

(recall that we’re assuming the information he gathered regarding the particles can be represented in binary).

Then, we must include the tape in our definition of the system. In doing so, the entropy of the gas may very

well decrease as he selects for which particles enter side A and which enter side B, however, the entropy of the

system never decreases because the information stored in the particles isn’t lost but instead transferred to the

tape.

In this way, Maxwell’s demon was resolved after over 100 years of turmoil. In his lectures on computation

Feynman comments on Landauer’s principle:

This realization that it is the erasure of information, and not measurement, that is the source of

entropy generation in the computational process, was a major breakthrough in the study of reversible

computation.

17This was illustrated by Charles Bennett in a paper titled “The Thermodynamics of Computation — a Review,” published in
1982.
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8

HELIX-COIL THEORY

Helix Coil Theory

- David Goodstein

The helix-coil transition model is a formalized application of the partition functions developed in statistical

mechanics to help analyze the multistate conformational transitions of linear polymers. In particular, we’ll be

considering the formation of an α-helix from a polypeptide chain.

You’re probably already familiar with α-helices as they are among the most common types of protein

secondary structure.1 The reason these structures are so common is due to the natural stability and optimality of

the intermolecular interactions and bond lengths. Some common examples are α keratin, a principle component

of the epidermis and related appendages such as hair and nails, as well as collagen, which bears strong, insoluble

fibers responsible for connective tissue.

As a motivating example, consider a polypeptide of length 5, that is, one composed of 5 amino acid

residues. We can model the partitioning of energy states using the canonical ensemble. Although using the

NPT ensemble would be better suited to this situation, we’ll stick with the canonical ensemble for convenience.

An important aspect of our model to keep in mind is that entropy is inherently represented. That is, microstates

which are energetically favored are necessarily entropically favored. For our case of 5 residues... ya know I was

about to try and make a table but then I thought better of it. There’s a representation of all 32 microstates in

the lecture slides or either of the two textbooks for this class just go look at those.

The favorable macrostates are so because they have a greater degeneracy, that is, they are represented

more. Hence, we can rewrite our canonical partition function as

Q =

m=2N∑

i=1

λie
− Ei
RT (8.0.1)

where λi represents the frequency of the microstate and m = 2N is the total number of microstates for N

amino acid residues. For example, in the case of one helical residue among four other coils, there are
(

5
1

)
= 5

degenerate states and therefore λ1 = 5. Experiments can’t observe the populations of 32 unique microstates,

1Alongside β-sheets.
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hence, we define the fractional helicity as

〈fH〉 =

m∑

i=1

pifH,i =
1

Q

m∑

i=1

fH,ie
− Ei
RT (8.0.2)

Since fH is defined as the average number of helical residues divided by the length of the peptide, we can express

the expression above alternatively,

〈fH〉 =
〈j〉
N

=
1

N

N∑

j=1

j × pj (8.0.3)

where j is the average helicity of the macrostate2 Although a summation over the number of residues offers a

significant simplification from a summation over the total number of microstates, our work is far from done3.

In the succeeding sections we’ll develop models which significantly reduce the complexity of our expressions for

the partition function, affording considerable insight into key aspects of helix-coil energetics.

P.S. I used Q to express the partition function in the case of every model, so depending on the context Q

will take on a different expression. I don’t think this will cause any confusion, but just in case it does, try and

use context clues I guess.

8.0.1 The Noncooperative Model

The simplest model for helix formation we’ll consider is noncooperative formation in which each residue can be

thought of as being “independent” of its neighbor. That is, the existence of a helical coil in the polymer does

not influence the formation of helical coils in adjacent residues.

This assumption allows us to use a single expression for the free energy associated with the helical

transition. That is, if the change in free energy associated with one helical residue is given by ∆G̃◦c→h, then

the change in free energy for the same transition across five residues is 5∆G̃◦c→h. To simplify this expression

we can define a new variable representing the free energy conversion for a single residue as

κ = e−∆G̃◦c→h/RT (8.0.4)

κ can be thought of as a pseudo-equilibrium constant for a single residue4. If we consider the simple example

mentioned a moment ago for the difference between the transition of one residue versus five residues to the

helical transition, we could express the transition energy of one residue as κ and the transition energy as κ5

(convince yourself that this is true. It isn’t very hard).

With the energy associated with the coil-to-helix transition found, we can now try and discern the partition

function for all possible states of a peptide within the noncooperative model. The partition function is given

exactly as we’re used to,

Q =

N∑

j=1

gje
−∆G̃◦j /RT

which is analogous to Equation (8.0.1). Here, however, we’ve used gj to represent the degeneracy of each

microstate. Since the likelihood of each microstate is independent of one another (this is our primary assumption

under the noncooperative model), the degeneracy factor can be represented as a binomial coefficient and the

2The switch between using i and j as our iteration variables is intentional: i is used in a summation through all macrostates
whereas j is used in a summation through all residues.

3Is our work ever done? The answer is no. Always strive to be better.
4It’s not quite an equilibrium constant because there is more chemistry going on after folding. Intermolecular interactions

between residues on the peptide also contribute to the free energy of transition but aren’t captured by κ.
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partition function can be simplified:

Q =

N∑

j=1

(
N

j

)
e−∆G̃◦j /RT =

N∑

j=1

(
N

j

)
e−j∆G̃

◦
c→h/RT =

N∑

j=1

(
N

j

)
κj

Q = (1 + κ)N (8.0.5)

Equation (8.0.5) illustrates clearly the utility of the noncooperative model: The partition function for the

peptide can be represented in a simple, concise expression. Intuitively, this result should make sense. For

each residue we’re effectively flipping a coin, as each one can either exist in the coiled or helical state. With

N residues, then, there are 2N microstates. The partition function, however, considers energies, not just

microstates. So, the change in free energy associated with the transition can either be 0 (where the residue

exists in the coiled conformer) or ∆G̃◦c→h (where the residue has transitioned to the helix). The Boltzmann

factors come naturally from either of these two values and the partition function with those, using the same

logic mentioned a moment ago.

With the partition function defined we can ascertain the fractional helicity of peptide using Equation

(8.0.3):

〈f〉 =
〈j〉
N

=
1

N

N∑

j=1

jpj

=
1

N

N∑

j=1

j

(
N
j

)
κj

(1 + κ)N
=

1

N(1 + κ)N

N∑

j=1

(
N

j

)
jκj

Here we can take advantage of the chain rule to reexpress

jκj = κ
d(κj)

dκ

and substitute into our expression above:

1

N(1 + κ)N

N∑

j=1

(
N

j

)
jκj =

1

N(1 + κ)N

N∑

j=1

(
N

j

)
κ
d(κj)

dκ

=
κ

N(1 + κ)N
d

dκ

N∑

j=1

(
N

j

)
κj

=
κ

N(1 + κ)N
d(1 + κ)N

dκ

=
κ

N(1 + κ)N

(
N(1 + κ)N−1

)

=
κ

1 + κ
(8.0.6)

Equation (8.0.6) constitutes the fractional helicity for the noncooperative model of an α-helix.

Here is a list of all the results we’ve derived for the noncooperative model:

Q = (1 + κ)N is the partition function for a polymer with N residues. Here, κ = e−∆G̃◦c→h/RT is the

“pseudo-equlibrium constant.”

pi =

(
N
i

)
κi

(1 + κ)N
is the probability of a polymer having i helical residues under the noncooperative model.

〈fH〉 =
κ

1 + κ
is the fractional helicity of a polymer under the noncooperative model.
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Figure 8.1: The fractional helicity of a polymer as a function of κ takes the shape of a rectangular hyperbola,
indicative of a noncooperative relationship. This type of graph is in contrast to a sigmoid which (typically)
indicates cooperativity.

Figure 8.2: The fractional helicity of a polymer as a function of temperature follows an exponential decay.
Notice, however, that this exponential decay is very slow. At 2000 K the peptide maintains a fractional
helicity greater than 50%, even though there are barely any proteins which haven’t denatured well before this
temperature. This discrepancy between our intuition and our results incentives the definition of a cooperative
model for α-helix formation. Note that above, a value of ∆G̃◦c→h = −4 kJ/mol was chosen for no reason aside
from that was what Dr. Fried used in the slides.

8.1 Cooperativity

Cooperativity in protein folding is the phenomenon where one part of a peptide chain folding into a tertiary

structure makes it more likely that adjacent parts of the peptide do the same. The converse to this is also true:

The unfolding of one part of a protein influences adjacent residues to do the same, hence why denaturation can

happen so quickly at sufficient temperatures.

Depending on the context, cooperativity can take on slightly different meanings and is why I specified

cooperativity among proteins instead of just in general. In enzymatic catalysis, for example, cooperativity can

be thought of in terms of ligand binding.

The most simple model of cooperativity we could invoke for polymer folding is one where each residue may

affect those that it’s directly adjacent to but no others. This requires we define a coupling strength, oftentimes

denoted J ,5 and is typically negative as to be energetically favorable. Just as there is an associated Boltzmann

5You may recognize J from the splitting of peaks in NMR spectra. In the context of cooperativity, however, the term “coupling”
takes on a slightly varied meaning.
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constant for the change in free energy of folding, κ, there is one for coupling, denoted τ :

κ = e−∆G̃◦c→h/RT , τ = e−J/kBT

The Hamiltonian (recall that the Hamiltonian is an operator which represents the total energy of a system) for

a polymer of N residues becomes

H = J

N∑

i=1

σiσi+1 + ∆G̃◦c→h

N∑

i=1

σi, σi ∈ {0, 1} (8.1.1)

where σi = 1 corresponds to the existence of a helical residue on the peptide and σi = 0 a coiled residue.

8.1.1 The Zipper Model

The zipper model is a model for cooperative protein folding that assumes that once helices form, they “zip

up” into a continuous block. With this simplification, the coupling constant τ is introduced into the partition

function such that the Boltzmann factor for each microstate is of the form κjτ j−1. This simplification omits

the microstates which have blocks of helices separated by one or more coiled segments. As an example, for a

pentapeptide the zipper model does not accurately model microstates such as hchch or hchhhh. In practice,

however, this loss is negligible as long as τ is large, normally at τ = 103 or greater.

The simplification in the zipper model allows us to write the partition function as a sum over all helical

levels j, where j = 1, . . . , N for a peptide with N residues, using the Boltzmann factor κjτ j−1 described

above. With a little bit of mathematical intuition (and page 386 of Barrick) we can deduce that the number of

microstates involving helical residues can be counted by

W = N − j + 1

Then, the partition function can be described by

Q = 1 +

N∑

j=1

Wκjτ j−1 = 1 +

N∑

j=1

(N − j + 1)κjτ j−1 (8.1.2)

where the +1 term accounts for the completely coiled peptide chain. Equation (8.1.2) is adequate for short

peptide chains where the summation can be computed by hand easily. For longer chains, however, a closed form

solution for the partition function would be far less computationally-intensive. With a little bit of algebraic

gymnastics, beginning with bringing κ and τ to the same power, this can be achieved:

Q = 1 +

N∑

j=1

(N − j + 1)κjτ j−1

= 1 +
1

τ

N∑

j=1

(N − j + 1)κjτ j

= 1 +
1

τ

[ N∑

j=1

(N + 1)(κτ)j −
N∑

j=1

j(κτ)j
]

= 1 +
1

τ

[ N∑

j=1

(N + 1)(κτ)j − κ
N∑

j=1

∂

∂κ
(κτ)j

]

The derivative in the last line is introduced the same way as it was in Equation (8.0.6), this time making sure

to keep τ constant. Notice that we have two summations, each of which is a power series. I cover the derivation
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of a closed form solution to the power series in Section ?? so that we can rewrite the expression above as

Q = 1 +
1

τ

[
(N + 1)

κτ [(κτ)N − 1]

κτ − 1
− κ ∂

∂κ

(
κτ [(κτ)N − 1]

κτ − 1

)]
(8.1.3)

and evaluating the derivative affords the desired closed form solution for the partition function of the zipper

model:

Q = 1 + κ

[
(κτ)N+1 − (N + 1)(κτ) +N

(κτ − 1)2

]
(8.1.4)

Using the partition function we can define the fractional helicity for a polymer under the zipper model. As

before, when we did this for the noncooperative model, this can be done using the probabilities of a microstate

containing j helices:

〈fH〉 =
1

N

N∑

j=1

jpj =
1

NQ

N∑

j=1

j(N − j + 1)κjτ j−1 (8.1.5)

The derivation is really long and uses a lot of techniques we’ve already covered in finding closed form solutions

to the partition functions, so I’m not gonna do it here. Ultimately, we arrive at the following closed form

solution for the fractional helicity:

〈fH〉 =
2κ2τ [1− (κτ)N ] +Nκ[1− κτ ][1 + (κτ)N+1]

N(κτ − 1){1 + κ(N − 2τ) + κ2τ [τ − 1−N + (κτ)N ]} (8.1.6)

Graphing fractional helicity versus κ affords a sigmoid, corroborating the assumption about this model

being cooperative. Another trend that appears is that longer peptides show sharper helical transitions as a

function of κ. This is because longer peptides have more initiation sites and once a helix has been initiated,

longer stretches of the helix can propagate and the peptide becomes helical by cooperativity.

Additionally, if we graph fractional helicity versus τ , unsurprisingly, we find that helix formation likelihood

increases as τ increases. A rather surprising aspect of this plot, however, is that even at τ = 1 when there are

no favorable or unfavorable interactions between helices, α-helix formation is still largely sigmoidal whereas we

would expect a rectangular hyperbola, which is the case of noncooperativity. This discrepancy arises due to

the fact that the partition function omits those microstates which are helical with gaps. This assumption is

okay when τ is large (discussed earlier) so that “gapped” microstates have negligible populations. For small τ

values, these microstates are significantly populated, thereby changing the shape of the plot.

Figure 8.3: (A) The fractional helicity as a function of κ as the length of the polymer increases. Clearly, as
N tends to infinity the affinity for a polymer to become an α-helix increases. (B) The fractional helicity as a
function of κ as the coupling constant is (modestly) increased. For τ = 1, the unexpected shape is a result of
the assumptions made under the zipper model, as discussed above. As τ increases, the affinity for the polymer
to become helical increases which agrees with our intuition.
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Here is a list of all results we’ve derived for the zipper model for α-helix formation:

Q = 1 + κ

[
(κτ)N+1 − (N + 1)(κτ) +N

(κτ − 1)2

]
is the partition function for the zipper model.

pi =
(N − i+ 1)κiτ i−1

Q
is the probability of there being i helices in a peptide of N residues.

〈fH〉 =
2κ2τ [1− (κτ)N ] +Nκ[1− κτ ][1 + (κτ)N+1]

N(κτ − 1){1 + κ(N − 2τ) + κ2τ [τ − 1−N + (κτ)N ]} is a closed-form solution to the fractional

helicity of a polymer under the zipper model.

8.1.2 The Nearest-Neighbor Model

The nearest-neighbor model for α-helix formation remedies the assumptions and issues made by and raised in

the zipper model by utilizing a transfer matrix, allowing us not only to model microstates with helical segments

separated by coiled segments but also heteropolymers, that is, polymers which have peptide segments with

different κ values. Moreover, the nearest-neighbor model can accurately represent α-helix formation when

coupling is modest, i.e., when τ is small.

The transfer matrix we’ll utilize is given as

T =

[
κτ 1

κ 1

]
(8.1.7)

where the columns of T represent the Boltzmann factor associated with the helical and coiled configurations,

respectively, contingent on the conformation of the adjacent residues. To build the partition function we need

to generate 2N terms, each representing the possible microstate of a particular residue, either helical or coiled.

This is done by multiplying T by itself N times. Ultimately, in order to attain the scalar partition function it

can be shown that

Q =
[
0 1

] [κτ 1

κ 1

]N [
1

1

]
(8.1.8)

where the row vector eliminates the top row of TN , and the column vector combines remaining terms in the

bottom row into a single sum. Barrick provides an example of utilizing Equation (8.1.8) for an N = 10

homopolymer and I think the equation is kinda pretty and also provides some intuition behind the various

combinations that are formed in the nearest-neighbor model, so I’m gonna use that example here as well,

factoring slightly different than is provided on page 391 of Barrick. For an N = 10 homopolymer,

Q = 1

+ 10κ

+ 9κ2(4 + τ)

+ 8κ3(7 + 7τ + τ2)

+ 7κ4(5 + 15τ + 9τ2 + τ3)

+ 6κ5(1 + 10τ + 20τ2 + 10τ3 + τ4)

+ 5κ6τ(1 + 10τ + 20τ2 + 10τ3 + τ4)

+ 4κ7τ3(5 + 15τ + 9τ2 + τ3)

+ 3κ8τ5(7 + 7τ + τ2)

+ 2κ9τ7(4 + τ)

+ κ10τ9

A few things to notice: 1) The sum of the coefficients in each row of the equation above sum to the the

corresponding value in the 10th row of Pascal’s triangle. That is, for row 5 in the equation above (taking the
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first row to be row 0) with 5 helical residues, hence the factor of κ5, the coefficients sum to

6(1 + 10 + 20 + 10 + 1) =

(
10

5

)
= 252

2) The partition function is symmetric with respect to the number of ways to arrange the helical coils in the

polymer which connects directly to Pascal’s triangle at what we just mentioned about the coefficients of the

terms in each row. 3) Lastly, the ways of arranging the helical residues and the coefficients that come about for

each term are a result of the order of the coupling constant, τ . Notice that as the number of helices increases

in the expression above, the order of κ increases linearly and doesn’t depend on the number of ways to arrange

the residues. In contrast, the coefficients of τ (within the parentheses) vary drastically depending on how many

helices are present, and in particular, they vary with the Nth row of Pascal’s triangle. That is all to say,

the expressions for the partition function could be determined analytically without needing to go through all

the matrix multiplication, all that it would require is some cheeky combinatorics and more willpower than is

typically necessary than for anything else in this class.

With some newfound intuition for the partition function of the nearest-neighbor model we can analyze

the predicted fractional helicity of a polymer under this model. Just as in the case of the zipper model, the

fractional helicity can be expressed as a summation over each possible microstate with j helical residues:

〈fH〉 =
1

N

N∑

j=1

jpj

Now, recall Equation (8.1.5) which contains a similar expression for the fractional helicity of a polymer under

the zipper model. The (N − j+1) term represents all of the combinations of helical residues that are permitted

under this model. In contrast to this case, however, we’ve seen how this combinatorial coefficient for the

nearest-neighbor model will be slightly more complex. So, we’ll simplify our lives by expressing this coefficient

as f(τ, j,N), indicating that it’s a function of τ , j, and N . Hence, the fractional helicity becomes

〈fH〉 =
1

N

N∑

j=1

jf(τ, j,N)pj

=
1

NQ

N∑

j=1

f(τ, j,N)jκj

=
κ

NQ

N∑

j=1

f(τ, j,N)
d(κj)

dκ

=
κ

NQ

d

dκ

N∑

j=1

f(τ, j,N)(κj)

=
κ

NQ

dQ

dκ
(8.1.9)

Equation (8.1.9) is the fractional helicity of a polymer under the nearest-neighbor model. Similar to the

derivations of some of the partition functions and fractional helicity expressions above, the derivative originally

introduced in the derivation of Equation (8.0.6) was utilized in line 3.

Here is a list of the key results for the nearest-neighbor model:

Q =
[
0 1

] [κτ 1

κ 1

]N [
1

1

]
is the partition function for the nearest-neighbor model.

pi =
f(τ, i,N)κi

Q
where f(τ, i,N) is the really weird coefficient that isn’t easy to express combinatorially,

is the probability of there being i helices in a peptide of N residues.
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Figure 8.4: The shapes of the graphs of fractional helicity versus κ as the length of the peptide chain changes
and as the coupling constant τ changes are similar for the zipper model and nearest-neighbor model. The
contrast lies in the shapes of the plots which vary τ : For τ = 1 in figure above, a rectangular hyperbola appears
which agrees with our intuition about cooperativity. Recall that for the zipper model the case of τ = 1 leads
to inaccurate results, as expected. The nearest-neighbor model remedies those discrepancies.

〈fH〉 =
κ

NQ

dQ

dκ
is a closed-form solution to the fractional helicity of a polymer under the zipper model.

Before ending our discussion on α-helix formation I’ll extend the nearest-neighbor model approach to a

heteropolymer which will accommodate variation in a peptide sequence. In principle, differences in the transfer

matrix for this model could arise due to variations in κ or in τ (or both) but in practice it is far simpler to

restrict effects on the transfer matrix to only κ. Then, our matrix becomes

T =

[
κiτ 1

κi 1

]

where κi represents the Boltzmann factor for some residue on a polymer. Barrick uses the example of an α-helix

found in the myoglobin of sperm whales on page 393, a protein which houses N = 24 residues. Finding the

partition function by hand is unwieldy, yet trivial to a computer which is why I’ll leave that calculation to

you, in case you’re interested. Additionally, variation in T creates a scenario where the matrix product does

not easily factor into something compact leading to messy expressions for the partition function and fractional

helicities of the protein.

8.2 Flory Theory

Paul Flory was a smart man, smarter than many of us will ever be. He was among one of the first scientists to

prove that polymers are covalently linked macromolecules and went on to show that these covalent bonds are

responsible for the principle differences between polymers and their monomeric constituents. He introduced

Flory theory which addressed the problem of modeling real conformations of polymer chains using estimates

for both the energetic and entropic contributions. Surprisingly, this simple model is incredibly accurate for real

polymers. Although, it may be shown that this accuracy is due the cancellation of errors across the energetic

and entropic terms. As we’ll see, Flory theory overestimates both the the energetic and entropic contributions to

the free energy, and since these contributions increase and decrease the free energy, respectively, their influences

effectively cancel one another out.

To begin our discussion on Flory theory we’ll first establish some basic definitions and parameters. In

the most basic sense, we can consider a polymer as a long molecule consisting of repeating monomers linked

together by bonds. Define the bond vector between any adjacent monomers as ~τ with magnitude ||~τ || = b.
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Additionally, we can define the end-to-end distance of the polymer as ~R =
∑
i ~τi with magnitude ||~R|| = R.

The distinction of making ~τ and ~R vectors is important because the bond between any two monomers can be

pointing in any direction. Although, since the length of the bond between any two monomers will be constant,

normally we won’t have to worry about direction.

We can use a 1-dimensional monomer as a motivating example for this section. Each monomer can move

in one of two directions, either “forward” or backward.” Since this choice is random, the situation is effectively

that of flipping a coin. So, the distribution of directions for each vector (in other words, how many ways does the

monomer move forwards or backwards over the entire polymer) follows a binomial distribution. For a polymer

of length N with N = n1 + n2, where n1 indicates the number of times a monomer is moving in direction 1

and n2 is defined similarly for the other direction, the number of ways for this polymer to be arranged is

W =
N !

n1!n2!

If we define R/b = L as the displacement of the polymer (the distance from the beginning to the end of the

polymer), then we have L = n1 − n2 which implies (N + L)/2 = n1 and (N − L)/2 = n2 and we can rewrite

the number of microstates for this 1-dimensional polymer as

W =
N !

(N+L
2 )!(N−L2 )!

(8.2.1)

Now we can use Stirling’s approximation to write this in a more computationally friendly manner. First,

lnW = N lnN +N ln 2− N + L

2
ln(N + L)− N − L

2
ln(N − L)

Here we’ll assume that N is large so that N � L/N . Moreover, define ε = L/N so that our expression may be

simplified as,

lnW = N lnN +N ln 2− N(1 + ε)

2
ln
[
N(1 + ε)

]
− N(1− ε)

2
ln
[
N(1− ε)

]

Here I took advantage of the fact that

( 1
N
1
N

)
N + L

2
=

1 + L
N

2/N
=
N

2
(1 + ε)

to make the first substitution above, and used a similar technique for the remaining expressions. The intro-

duction of ε will prove useful because of the quadratic approximation to ln(1 + x)6 (that’s not a power of 6

it’s a footnote). It’s some pretty straightforward calculus to arrive at the approximation, so I’ll just do it here

quickly:

Recall that any second-order approximation can be modeled as

T2(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)(x− x0)2

2!

where x0 is the point at which we’re centering the approximation (x0 = ε0 = 0 in this case) and f(x) is the

6We only care about the quadratic approximation and not any other higher order terms because the accuracy of the approxi-
mation increases negligibly once adding the third-, fourth-, fifth-order terms, etc.
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function of interest (f(x) = ln(1 + x) in this case). Finding these derivatives and plugging in ε0 = 0 affords

T2(x) = ln(1 + ε0) +
1

1 + ε0
(ε− ε0) +

(
− 1

(1 + ε0)2

)
(ε− ε0)2

2!

= ln(1 + 0) +
1

1
(ε) +

(
− 1

(1)2

)
ε2

2!

= ε− ε2

2

Okay, back to the chemistry stuff. With this approximation we can rewrite our expression for lnW as

lnW = N lnN +N ln 2− N(1 + ε)

2
ln
[
N + ε− ε2/2

]
− N(1− ε)

2
ln
[
N − ε− ε2/2

]

= N(lnN + ln 2)− N

2

[
lnN + ε− ε2/2 + ε lnN + ε2 − ε3/2 + lnN − ε− ε2/2− ε lnN + ε2 + ε3/2

]

= N(lnN + ln 2)− N

2

[
2 lnN + ε2

]

= N lnN +N ln 2−N lnN − Nε2

2

= N ln 2− Nε2

2

= N ln 2− L2

2N
= N ln 2− R2

2Nb2

Thus,

W = exp

{
N ln 2− R2

2Nb2

}

= 2Ne−R
2/2Nb2 (8.2.2)

is the number of microstates for this random walk 1-dimensional polymer. If we wanted to consider the

probability of any microstate, we’d be interested in the quantity

W

2N
= e−R

2/2Nb2

Upon further inspection, however, notice that the right-hand side of this equation is unnormalized. We can

normalize the distribution by integration over the support of the possible values for R. Since ~R can point in the

positive or negative direction in the case of 1-dimension, R (the magnitude) can be either positive or negative

and therefore the support of R is from −∞ to ∞. So,

∫ ∞

−∞
e−R

2/2Nb2dR =
√

2πNb2

which is exactly a Gaussian integral. I cover this sort of evaluation in Section ?? if you’re interested. Thus,

the probability distribution for the length of this 1-dimensional random walk polymer is

P (R) =
e−R

2/2Nb2

√
2πNb2

(8.2.3)

which is exactly a normal distribution.

8.2.1 The Troubling Case of a 3D Polymer

The logic followed for finding the probability distribution of the end-to-end distance for a random walk polymer

in one-dimension, Equation (8.2.3), can be applied identically to the case of a three-dimensional polymer by
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considering the movement in each of the possible three directions to be independent of one another. More

technically, we would say that the movement in any of the x-, y-, and z-direction is isotropic. Then, the

probability distribution for R in three dimensions is given by

P (R) = P (Rx)P (Ry)P (Rz) =

(
e−R

2
x/2Nb

2

√
2πNb2

)(
e−R

2
y/2Nb

2

√
2πNb2

)(
e−R

2
z/2Nb

2

√
2πNb2

)

=
e−3(R2

x+R2
y+R2

z)/2Nb2

(2πNb2/3)3/2

=

(
3

2πNb2

)3/2

e−3R2/2Nb2

Here, I’ve adopted the notation R = (Rx, Ry, Rz) to simplify the expression. Also, note that since we assumed

that each of the directions are spatially isotropic with one another, the overall variance of the random walk must

remain the same as if it were one-dimensional yet be distributed across three directions. Hence, the variances

are given as

〈R2
x〉 = 〈R2

y〉 = 〈R2
z〉 =

Nb2

3

which accounts for the factor of 1/3 in each of the expressions.7 However, this expression is not our final answer

for the probability density. In the case of one dimension, the endpoint of the polymer chain did not have any

degrees of freedom. That is, for a predetermined end-to-end vector ~R there is only point for the end of the

polymer to exist. This is in contrast to the three-dimensional case for which ~R could exist anywhere on the

surface of a sphere, centered at the tail of ~R.8 Thus, the probability density of the end-to-end distance for the

three-dimensional random walk polymer must be scaled by the surface area of this sphere, given as

P (R) = 4πR2

(
3

2πNb2

)3/2

e−3R2/2Nb2 (8.2.4)

where R is the magnitude of the end-to-end vector.

We could have also arrived at Equation (8.2.4) beginning from entropy for the same type of polymer.

Using Equation (8.2.2) as a template, the number of microstates for the three dimensional polymer may be

expressed as

W = 4πR2e−3R2/2Nb2

where the 4πR2 takes the place of the 2N term as the scaling factor in three dimensions, and the exponential

is raised to the power of 3 to account for the dimension as well. Then, the entropy of this polymer is found

using Boltzmann’s equation:

S = kB lnW

= kB ln(4πR2e−3R2/2Nb2)

=
−3kBR

2

2Nb2
+ kB ln(4πR2)

The Helmholtz free energy which will take the place of the energy in our Boltzmann factor becomes

A = −TS

= −T
[−3kBR

2

2Nb2
+ kB ln(4πR2)

]

=
3kBTR

2

2Nb2
− kBT ln(4πR2)

7The variance is equal to the second moment of the distribution in this case because the mean of the distribution is zero.
8The two dimensional analogue to this would be scaling the possible endpoints by the surface area of a circle.
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which affords the Boltzmann factor for this polymer:

e−A/kBT = exp

{
−
( 3kBTR

2

2Nb2 − kBT ln(4πR2)

kBT

)}

= exp

{
− 3R2

2Nb2
+ ln(4πR2)

}

= 4πR2e−3R2/2Nb2

Thus, after properly normalizing we arrive at the probability density for the end-to-end distance of the three

dimensional random walk polymer as

P (R) = 4πR2

(
3

2πNb2

)3/2

e−3R2/2Nb2 (8.2.5)

which agrees Equation (8.2.4).

8.2.2 Self-Avoiding Polymers

Our discussion of random walk polymers up until this point has focused on those which are driven entirely

by entropy. Now, we introduce the idea of a self-avoiding polymer, one with a nonzero free energy term that

depends on repulsion between monomers. Returning to the simplest version of a three-dimensional polymer

with an entropy given by,

S(R) =
3kbR

2

2Nb2
(8.2.6)

Flory suggested introducing a term representing the internal energy of the polymer which takes the form

A = U − TS

=
vN2

R3
− T

(
C − 3kBR

2

2Nb2

)
(8.2.7)

where the N2/R3 term is representative of the density of monomer pairs within the volume created by the

polymer, v is a proportionality constant, and C is some constant to represent the ground state energy of the

polymer; N2 is indicative of the pairwise interaction and R3 is directly proportional to the volume of the ‘sphere’

surrounding the polymer. This is why the interaction ‘per’ volume can be thought as a density. Intuitively, the

idea of this repulsive energy term is similar to steric hindrance. It’s important to note that v is positive so that

the term vN2/R3 is always positive as well; This guarantees that the energy term will indeed be repulsive.

With this new expression for the internal free energy we can compute the equilibrium length of the

polymer. At equilibrium, the free energy will be minimized and so ∂A/∂R = 0:

∂A

∂R
=

∂

∂R

[
vN2

R3
− T

(
C − 3kBR

2

2Nb2

)]

0 =
−3vN2

R4
+

6kBTR

2Nb2

vN2

R4
=
kBTR

Nb2

R =

(
vb2

kBT

)1/5

N3/5 (8.2.8)

This result for the end-to-end length of the polymer using a simple model asserts that the length is proportional

to the number of monomers to the power of 0.6, that is, N3/5. Experimentally, the accepted result for the

exponent is 0.588, incredibly close to that predicted by Flory. At this point it’s important to recognize that
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we would not have achieved this result had we assumed the energy of interaction between monomers could be

favorable, that is, allowing v to be negative. It’s a subtle difference, and modeling inter-polymer interactions

as favorable would be weird, but important to understand to reinforce our understanding nonetheless.

Notice the temperature dependence of the equilibrium length for the polymer. When we increase the

temperature of the polymer, the entropic term of the free energy in Equation (8.2.7) has a greater impact.

Additionally, from Equation (8.2.8) we see that the equilibrium length of the polymer decreases as temperature

increases. Thus, using Equation (8.2.6) the entropy of the polymer must also decrease with an increase in

temperature and therefore the overall free energy of the polymer increases, corresponding to a greater number

of monomer-monomer interactions which goes hand-in-hand with a smaller polymer size. That is all to say, our

intuition is correct!

This result prompted a more generalized version of the free energy for a self-avoiding polymer in d

dimensions. Typically, as chemists, nobody really cares about dimensions greater than three because why

would you. However, I guess Flory was a physicist so he was interested in this. The power law we desire is

relatively intuitive, though, using a similar argument as we did above regarding the density of interactions.

Note that the volume of an n-dimensional sphere is directly proportional to the radius of the sphere to the nth

power. Thus, the term introduced to the free energy in Equation (8.2.7) can be rewritten as vN2/Rd for any d

dimensions. In addition, we require that the entropy term be scaled by a factor of d which can be derived from

the Boltzmann equation (at least I’m pretty sure you could derive it from the Boltzmann equation). Thus, a

generalized expression for the free energy of a self-avoiding random walk polymer in d dimensions is given as

A =
vN2

Rd
− T

(
C − dkBR

2

2Nb2

)
(8.2.9)

Then, we can model the equilibrium length of the polymer to the number of monomers in the chain relation as

R ∝ Nν , ν =
3

d+ 2
(8.2.10)

where ν = 3/5 was our result for three dimensions in Equation (8.2.8) which agrees with our result from

Equation (8.2.10) for d = 3.

Real quick before talking about binding equilibria, the theoretical result that the internal energy for a

self-avoiding random walk polymer is proportional to 1/Rd can be rationalized if we think of a polymer as a

snake from Snake (like the video game). The game Snake becomes a lot easier as we add more dimensions

because there are more directions to move and therefore less ways of getting “trapped.” Hence, there are less

arrangements of the polymer in which unfavorable monomer-monomer interactions occur in higher dimensions

and the internal energy term decreases.

8.3 Binding Equilibria

Binding reactions and their equilibria are central to nearly biochemical process. From the binding of THC

to cannabinoid receptors in your brain to the HGH injected by bodybuilders, drug binding is a large part of

biological and physical science.

We’ll begin by analyzing a simple bimolecular reaction involving the binding of a single ligand, x, to the

active site of a macromolecule, M . This reaction can be written as

M + x −−⇀↽−− Mx (8.3.1)

where the equilibrium constant is given by

Keq =
[Mx]

[M][x]
= e−∆G̃◦rxn/RT = K−1

d (8.3.2)
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Kd is the dissociation constant and used primarily by biochemists because it has “units” of molarity.9 Moreover,

Kd represents the free ligand concentration at which the molecule is half-saturated, when [Mx] = [M].

The relationships outlined in Equation (??) provide simple thermodynamic descriptions of a single-site

binding event. However, to be useful in an experiment they must be able to be connected to actual binding

data. The most common of these statistics are fractional saturation, 〈fb〉, and average ligation number, 〈xb〉.
The fractional saturation is defined as the fraction of macromolecular binding sites that have ligand bound and

can be expressed as

〈fb〉 =
[Mx]

[M] + [Mx]
(8.3.3)

Similarly, the average ligation number is the average number of ligands bound per macromolecule and is related

to the fractional saturation by

〈fb〉 =
〈xb〉
s

where s is the number of active sites on the macromolecule. The fractional saturation can be related to the

equilibrium constant with relative ease using Equation (8.3.2):

〈fb〉 =
[Mx]

[M] + [Mx]

=
Keq[M][x]

[M] +Keq[M][x]

=
Keq[x]

1 +Keq[x]
(8.3.4)

Equation (8.3.4) is important and incredibly useful because it relates experimentally observable quantities, 〈fb〉
and [x], to a thermodynamically relevant quantity, the equilibrium constant. Notice that this expression for

〈fb〉 more clearly illustrates how a plot of 〈fb〉 vs. [x] is a rectangular hyperbola.

As with conformational transitions (covered in Chapter 5), the midpoint of the binding curve is an

important parameter with direct connections to thermodynamics. We can evaluate the midpoint of the binding

curve by allowing 〈fb〉 = 0.5. Using Equation (8.3.4), then,

0.5 =
Keq[x]m

1 +Keq[x]m

[x]m =
1

Keq
= Kd (8.3.5)

Thus, we see that the numerical value of the equilibrium constant strongly influences the shape of the resultant

binding curve. This result is similar to a titration curve for acid-base chemistry, where an acid is half-protonated

when pH = pKa. Plotting the fractional saturation curve affords some nice curves and allows us to see how

the binding constant, Keq, affects the shape of the graph. These graphs can be found in Figure 8.5.

Within an experiment we won’t ever actually measure the fractional saturation directly. Instead, some

signal Yobs is observed and recorded. In particular, Yobs is assumed to be a signal originating from a population-

9In reality, equilibrium constants are never given a unit. So, it stands to reason that Kd is used because of its apparent
dimensionality which makes it easier to talk about.
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Figure 8.5: Binding curve of 〈fb〉 vs. [x] for multiple equilibrium constants. The larger the equilibrium constant,
the more affinity the ligand has for the active site on the molecule and the more steep the transition in the
curves above. The curve which reaches 〈fb〉 = 1 the fastest (the red curve) would be the strongest binder and
the one which reaches a fractional saturation of 1 the most slowly (the blue curve) is the weakest binder.

weighted average of unbound and bound macromolecule, expressed as

Yobs = Yfreeffree + Yboundfbound

= Yfree(1− fbound) + Yboundfbound

= Yfree + (Ybound − Yfree)fbound

= Yfree + ∆Y

(
Keq[x]

1 +Keq[x]

)
(8.3.6)

Equation (8.3.6) offers a way of indirectly measuring the fractional saturation, 〈fb〉. Also, above we defined

∆Y = Ybound − Yfree which is the amplitude, or better yet dynamic range, of the data and is indicative of the

total deflection swept out by the binding curve. Binding processes which give rise to a large amplitude provide

greater confidence in our measurements for the fractional saturation and the equilibrium constant.

In most ligand binding experiments, a solution of macromolecule M is prepared at a known concentration

and then a specific amount of ligand x is added at a known concentration. So, although we know the total

amounts of ligand and macromolecule, once they’re combined and the binding reaction begins its difficult to

determine the concentrations of either. By invoking the conservation of mass to the reaction in Equation (8.3.1)

we can say that

[x]tot = [x] + [Mx]

[M]tot = [M] + [Mx]

are the total concentrations of the ligand and macromolecule, respectively. Then, we can rewrite the equilibrium

constant in Equation (8.3.2) using the known parameters as

Keq =
[Mx]

[M][x]
=

[Mx]

([M]tot − [Mx])([x]tot − [Mx])
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which can be rewritten as a quadratic in [Mx] and solved accordingly:

[Mx] = Keq([M]tot − [Mx])([x]tot − [Mx])

0 = Keq([M]tot − [Mx])([x]tot − [Mx])− [Mx]

= [Mx]
2 −

(
[M]tot + [x]tot +

1

Keq

)
[Mx] + [M]tot[x]tot

[Mx] =
[M]tot + [x]tot + (1/Keq)±

√
[[M]tot + [x]tot + (1/Keq)]2 − 4[M]tot[x]tot

2
(8.3.7)

Notice that we “created” this quadratic with the initial substitutions into the expression for the equilibrium

constant and with that introduced some extraneous answers. To determine which of (+) or (−) we want after

applying the quadratic formula we can evaluate our new expression for [Mx] in Equation (8.3.7) at [x]tot = 0

M:

[Mx] =
[M]tot + (1/Keq)±

√
[[M]tot + (1/Keq)]2

2

=
[M]tot + (1/Keq)±

(
[M]tot + (1/Keq)

)

2

Clearly, when [x]tot = 0 M, [Mx] = 0 M must also be true because there is no ligand to bind. Hence, we’ll

be interested in the “minus” of (±) in our quadratic. Then, plugging this result into Equation (8.3.6) for Yobs

affords

Yobs = Yfree + ∆Y

(
[M]tot + [x]tot + (1/Keq)±

√
[[M]tot + [x]tot + (1/Keq)]2 − 4[M]tot[x]tot

2[M]tot

)
(8.3.8)

8.3.1 Fluorescence Anisotropy

Fluorescence anisotropy is a phenomenon in which the light emitted by a fluorophore has unequal intensities

along different axes of polarization.10 When a fluorophore absorbs a photon an electron is excited to the excited

state and, after a short waiting time, the electron emits that energy as either a photon (radiative emission) or

as heat (non-radiative emission) and returns to the ground state. This excitation is associated with an unequal

redistribution of electrons throughout the molecule such that only electrons which are oriented in the same way

as the incoming light may be excited.11

If we limit our experiment to measuring only radiative emission (and disregarding the quantum yield, I

suppose), the direction of the wave of light emitted by the excited fluorophore will change with respect to a

few parameters, the most important of which (in our case) being the time that the electron stays in the excited

state before being emitted. In the limit that the electron returns to the ground state immediately after being

excited, that is, there is no waiting time, the direction of light will be the exact same as that absorbed. In

the limit that the electron dawdles in the excited state, that is, the waiting time is long, there is a significant

probability that the direction of the light which is emitted from the fluorophore is different from that absorbed.

Typically, smaller fluorophores have shorter waiting times and larger fluorophores have longer waiting times.

So, by measuring the type of light that the fluorophore emits and comparing it to the light which we initially

shined at it, we can estimate how large or small the protein is!

Obviously, this model is very simplified. Fluorescence experiments can do a lot more than this, but this

example utilizes how we might use it in the context of ligand binding. In fact, in the references there is a very

10Anisotropy is defined as “having a physical property that has a different value when measured in different directions.” A
very simple example is wood which is stronger along the grain than across it. When we talk about fluorescence anisotropy we’re
referring to asymmetric distribution of orientations for the waves of light emitted by the fluorophore upon excitation.

11The “orientation” with respect to an electron and a wave are seemingly unrelated at first. An electron has an associated spin
whereas a wave has an associated... orientation. I like to think about it in terms of vectors: the vector associated with the electron
has a direction determined by the angular momentum of the particle (in fact, this is one of the quantum numbers associated with
each electron) and the vector associated with the wave is that normal to the “surface” formed by the wave. Then, light will be
absorbed by the electron which has an angular momentum vector in the same direction as the normal vector to the wave.
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informative book about all sorts of fluorescence experiments (and fluorescence anisotropy, of course) that I like

enough to also draw your attention to here:

https://link.springer.com/chapter/10.1007\%2F978-0-387-46312-4_10

8.3.2 Numerous Binding Sites

Many macromolecules have multiple binding sites and the single-site scheme discussed up until this point proves

insufficient in describing these systems, in addition to being mechanistically incorrect. Considering only a single

type of ligand which can bind to some macromolecule,12 we can represent the reaction with the following scheme,

M0 + sx −−⇀↽−− Mx1 + (s−1)x −−⇀↽−− Mx2 + (s−2)x −−⇀↽−− . . . −−⇀↽−− Mxs (8.3.9)

or more simply

M0 −−⇀↽−− Mx1 −−⇀↽−− Mx2 −−⇀↽−− . . . −−⇀↽−− Mxs (8.3.10)

A key feature of macromolecule binding events is that they can be energetically coupled such that binding can

either encourage or discourage the affinity of the macromolecule for ligand. This phenomenon is referred to as

cooperativity (I’m pretty sure I already talked about it somewhere).

Assuming I have in fact talked about cooperativity somewhere else in this paper, we’ll begin to draw some

parallels between multisite binding phenomena and single-site binding. The fractional saturation for a molecule

with multiple binding sites can be represented as a sum of the concentrations of all forms of macromolecule

with ligand bound, times the fractional saturation of the macromolecule in each corresponding ligation state,

divided by the total concentration of macromolecule. Symbolically,

〈fb〉 =
1
s [Mx1] + 2

s [Mx2] + · · ·+ s
s [Mxs]

[Mx1] + [Mx2] + · · ·+ [Mxs]

=
1

s

(∑s
k=1 k[Mxk]∑s
k=1[Mxk]

)

This expression for the fractional saturation can be cumbersome. We can try and simplify it by substituting

Ki[M][x]i = [Mx]i for each of the bound terms above, but even then we’re left with many, difficult to measure

quantities. So, instead, we can utilize the relationships given in Figure 8.6 to express each of the [Mx]i’s with

rearranged versions of the overall binding constants to yield

〈fb〉 =
1

s

(
β1[M0][x] + 2β2[M0][x]2 + · · ·+ sβs[M0][x]s

[M]0 + β1[M0][x] + β2[M0][x]2 + · · ·+ βs[M0][x]s

)

=
1

s

(
β1[x] + 2β2[x]2 + · · ·+ sβs[x]s

β1[x] + β2[x]2 + · · ·+ βs[x]s

)

Notice that the denominator of the fractional saturation as its been expressed most simply is a simple polynomial

in the ligand concentration, [x]. We can refer to this expression as the binding polynomial, defining

P = 1 + β1[x] + β1[x]2 + · · ·+ βs[x]s = 1 +

s∑

i=1

βi[x]i (8.3.11)

P closely resembles expressions we’ve seen for partition functions in statistical mechanics, except for the

fact that P is a polynomial and not a sum of exponentials. However, recall from Chapter 5, in Equation

(4.1.21) we defined the chemical potential of a species in a solution. Using this expression we can relate the

12We’d refer to the macromolecule as being “homotropic” in this case. If the molecule was instead capable of binding all sorts
of different ligands it would earn the title of “heterotropic.”



110 CHAPTER 8. HELIX-COIL THEORY

Figure 8.6: For a macromolecule with s binding sites, ligand binding can be described as a series of steps, each
of which is the binding event of a single ligand, represented by part (A) of the figure. Alternatively, multisite
binding can be described as a collection of overall binding reactions in which the reactants are i ligands and
the product contains i bound ligands, represented in (B).

concentration of a species in solution to an exponential as

[x]i =
(
e−(µ◦x−µx)/RT

)i
(8.3.12)

Substituting Equation (8.3.12) into the binding polynomial affords a partition function that allows the chemical

potential of one of the reactants to vary, which is appropriate for a ligand binding experiment.13 With P

thoroughly defined, we can use it to concisely express the fractional saturation 〈fb〉 (for the last time):

〈fb〉 =
1

s

(∑s
i=1 iβi[x]i

P

)

=
[x]
∑s
i=1 iβi[x]i−1

sP

=
[x]
∑s
i=1 βi(d[x]

i
/d[x])

sP

=
[x]

sP

d
(∑s

i=1 βi[x]
i
)

d[x]

=
[x]

sP

d
(

1 +
∑s
i=1 βi[x]

i
)

d[x]

=
[x]

sP

dP

d[x]
=

1

s

d lnP

d ln [x]
(8.3.13)

Equation (8.3.13) offers the fractional saturation of a macromolecule with multiple binding sites. Figure 8.7

illustrates the differences in shapes between the fractional saturation curves of macromolecules with two active

sites, one of which is positively cooperative and the other of which is negatively cooperative.

8.3.3 The Hill Model

The Hill Model is one of the simplest models for cooperativity in ligand binding and was first introduced

in an attempt to analyze the binding of oxygen to hemoglobin. Essentially, the Hill model assumes infinite

cooperativity such that once a single ligand is bound to a multi-site molecule, all other binding sites are

immediately bound as well. Schematically, this can be written as

M0 + nx −−⇀↽−− Mxn, Kd =
[M0][x]n

[Mxn]

13This is analogous to the partition function of the “grand canonical ensemble,” something that I hope I already had the chance
to discuss in the chapter on Statistical Mechanics.
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Figure 8.7: The curves shown above illustrate the shapes of the binding curves for a (positively) cooperative
and negatively cooperative macromolecule with two binding sites (the shape holds for any number of n binding
sites, though). The equilibrium constants for the cooperative binding are K1 = 0.1 M−1 and K2 = 10 M−1.
The equilibrium constants for the negatively cooperative binding are K1 = 10 M−1 and K2 = 0.1 M−1.

where n is the number of active sites on the molecule and therefore also the number of ligands necessary for the

reaction to proceed. Following a similar procedure as we did to derive the fractional saturation of a single-site

macromolecule in Equation (8.3.4) we can show that the fractional saturation for a macromolecule following

the Hill model is given by

〈fb〉 =
[x]n

Kd + [x]n
(8.3.14)

Historically, n is known as the Hill constant, and it increases with increasing cooperativity of a reaction. Thus,

it provides a convenient and simple characterization for a ligand binding reaction. For n > 1, binding reactions

are positively cooperative, for n < 1, binding reactions are negatively cooperative, and for n = 1 binding reactions

are noncooperative. It’s important to note, however, that the Hill model is exactly that, a model. For example,

the binding of diatomic oxygen to hemoglobin would have a Hill constant of n = 4. Experimentally, it’s been

determined that the binding curve fits n ≈ 3 more appropriately. Additionally, diseases which affect the blood

can decrease the Hill constant of hemoglobin further, such as the genetic defects associated with sickle-cell

anemia.

Equation (8.3.14) can be used to derive the Hill plot which affords more information about the thermody-

namics of the binding reaction. Don’t worry though, only a small amount of algebraic gymnastics is necessary

to get us there

〈fb〉(Kd + [x]n) = [x]n

〈fb〉Kd = [x]n(1− 〈fb〉)
〈fb〉

1− 〈fb〉
=

[x]n

Kd

ln

( 〈fb〉
1− 〈fb〉

)
= n ln[x]− lnKd (8.3.15)

Equation (8.3.15)
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Figure 8.8: This is the Hill plot for a two-site macromolecule. Here we’ve used K1 = 0.1 M−1 and K2 = 10 M−1.
The Hill plot (in grey) limits to a slope of 1 along the dotted lines which represent limiting ligand concentrations.
At these concentrations, binding appears as if to singles-site macromolecules. At the midpoint, the slope of
the binding curve is steeper than that of the reference line (in fact, the slope approaches 2), reflecting positive
cooperativity. The case of negative cooperativity would have a grey curve which would look reflected over the
red (reference) line.



CHAPTER

9

CHEMICAL KINETICS

Chemical Kinetics

- Scientist

A key theme running through the advancement of chemical kinetics is complexity. It includes the inves-

tigation of how experimental conditions influence the speed of a reaction and inform us about a reaction’s

mechanism and transition state. In contrast to thermodynamics, kinetics affords a rate of reaction, not a

direction.

Chemical kinetics is one of the oldest branches of chemistry and is responsible for assigning rate constants

to reactions and understanding the mechanisms behind chemical transformations. It is the ‘macroscopic’

treatment of the time-evolution of a system not in equilibrium. Hence, it allows us to differentiate between

things which are actually impossible versus things that are incredibly slow, e.g., the conversion of glucose to

water, carbon dioxide, and energy without any external motivation.

As a motivating example, consider the transformation of diamond to graphite, C(d) −−⇀↽−− C(g). This

reaction is exergonic with ∆G̃◦rxn ≈ −2.9 kJ/mol. So, we’d expect this reaction to occur spontaneously at

room temperature... which it does. Then why is it we never see this decay into graphite during fancy dinner

parties when everyone is wearing diamond jewelry? It’s because the reaction takes a very long time.1 Though,

at exceptionally high temperatures we can observe this reaction with an appreciable rate. With this idea in

mind we can add to our list of contrasts between thermodynamics and kinetics:

Stability refers to thermodynamics. Using our example of the decay from diamond to graphite, diamond

is considered unstable whereas graphite is stable.

Persistence refers to kinetics. In this example, both diamond and graphite may be called persistent

because the rate of decay from one phase to the other is immensely slow. The opposite of persistent is

transient.

Kinetics is all about time-evolution and so we’ll begin our kinetic description of a chemical reaction using

differential equations. Consider the chemical transformation

A −−→ B
1So long, in fact, that the average domesticated turkey would have to survive 108 times longer than it would on average to ever

witness the reaction take place.

113
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We can express the rate of this reaction as

rate =
d[B]

dt

By the law of conservation of energy, for every B that is formed there must be a corresponding A which

disappears and we can therefore express the rate alternatively as

rate = −d[A]

dt
(9.0.1)

More generally, for any chemical reaction of the form aA + bB −−→ gG + hH we can express the rate as

rate =
1

νA

d[A]

dt
=

1

νB

d[B]

dt
=

1

νG

d[G]

dt
=

1

νH

d[H]

dt

= −1

a

d[A]

dt
= −1

b

d[B]

dt
=

1

g

d[G]

dt
=

1

h

d[H]

dt

where νi are the reaction coefficients as defined in Section 5.2. Empirical evidence shows that the rates of

reactions for chemical transformations of this form can be expressed as

rate = k[A]x[B]y (9.0.2)

where k is the rate constant and the reaction is said to be xth order in A and yth order in B. Since the rate of

a reaction must also have units of molarity per second, the units for the rate constant must change depending

on the order of reaction and can be expressed concisely as M−(x+y−1) s−1.

Keep in mind that the order of a reaction is different from the molecularity of a reaction. The molecularity

of a reaction is the number of molecules that come together to react in an elementary step of a reaction. It

is equal to the sum of the stoichiometric coefficients of reactants. So, in the case of an elementary process,

the molecularity and order of a reaction are the same. The subtle yet important difference between these two

concepts may be expressed using a simple example. Consider the following two processes:

Bimolecular Unimolecular “Activation”

A + B −−→ P A −−→ I

I + B −−→ P

Here, A and B are reactants and I is some intermediate. The bimolecular reaction would be second-order overall

and first-order with respect to both A and B, with a rate expression

rate = k[A][B]

Assuming that the activation step A −−→ I is rate-limiting and that the formation of product P is rapid, the

unimolecular reaction would be first-order overall, first order with respect to A, and zero-order with respect to

B, with an expression for the rate as

rate = k[A]

A great example of a bimolecular process would be an SN2 reaction, which proceeds through a concerted

backside attack. Similarly, an example of unimolecular process might be an SN1 reaction where the high-

energy intermediate forms (oftentimes we think of a carbocation) before another reactant comes in to attack

the intermediate. Another common unimolecular reaction would be an intramolecular reaction, such as the Cope

rearrangement. A more rare type of reaction is a termolecular process in which three molecules simultaneously

come together to react.

Another example which may illustrate the important difference between order and molecularity is the

formation of amyloid-β (Aβ) which is found in the brains of people with Alzheimer’s disease. Aβ can form
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Figure 9.1: The difference between a bimolecular and unimolecular reaction. Above, the synthesis of 2-
methoxypropane can happen through either an SN1 or SN2 reaction which have different rate laws.

complex oligomers, following a reaction scheme such as

24 (Aβ) −−⇀↽−− 12 (Aβ)2 −−⇀↽−− 6 (Aβ)4 −−⇀↽−− . . . −−⇀↽−− (Aβ)24

Needless to say, it’s certainly not the case that 24 copies of Aβ come together at once to form the oligomer in

a single step. Thus, it becomes more clear how the molecularity, the number of monomers coming together to

form an intermediate complex in this scheme, can be much different from the empirically determined reaction

order. A logical question, then, is which intermediates do form? Which steps of the process are rate-limiting?

The answer to these questions can never be proven, only supported or better yet disproven. Consider the

following illustrative example: Suppose that for the simple reaction A + B −−→ P we collect some data and

seek to determine the mechanism by which the reaction proceeds.

[A]0 (mM) Initial d[A]0/dt (mM/s)

10 −0.1

20 −0.4

30 −0.9

If we suppose that the reaction is modeled by rate = k[A]x[B]y, the data would suggest that x = 2, consistent

with the mechanism

A + A −−→ I

I + B −−→ P

but not the mechanism A + B −−→ P. Of note is that fact that integer exponents are most common for rate

laws and will always be the case for elementary reactions (in which the molecularity of the reaction and reaction

order are the same). For complex processes, however, it is possible to have fractional exponents in the rate

law.2

In the table of data for this experiment notice that we always collected initial concentrations. This is be-

cause we always know and can control the initial concentration of the starting species. So, we can also always be

sure that when we measure the initial rate of reaction we are using the correct initial concentrations. In theory,

the rate law is a law and can be used to estimate the rate at any time during the reaction. However, measuring

the concentrations of all species simultaneously at a single time is very difficult and therefore estimating the

rate of reaction at any single time is very difficult.

2A complex reaction is one that involves more than one step. It is in direct contrast to an elementary reaction.
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9.0.1 Mechanism vs. Molecularity vs. Reaction Order

A useful illustration of the distinctions between mechanism, molecularity, and reaction order comes from the

analysis of intramolecular versions of typically intermolecular reactions. Consider the SN2 reaction between

an alkyl iodide and an amine. The reaction is second-order overall, first-order in both the amine and alkyl

iodide, and bimolecular (hence the “2” in SN2). The intermolecular reaction involves a backside attack of the

nucleophilic amine on the halogenated carbon, displacing the iodide in a single step (Reaction I in Figure 9.2).

This reaction will be second-order, with rate law

rate = k[Amine][Alkyl Iodide]

Now, consider the a long chain molecule that terminates on one end with an amine and on the other an

iodide. Two types of SN2 reactions are possible: If two different molecules react (Reaction III), we still have

the intermolecular reaction described above, and the product of the reaction would ultimately be a polymer

(Reaction IV). Alternatively, an intermolecular reaction could occur in which the amine at one terminus of the

molecule interacts with the iodide at the other terminus, producing a cyclic product (Reaction II).

The differing kinetic orders of these two reactions provides a simple means to select one product over the

other. The polymerization reaction depends on the square of the concentration of the reactant from reaction

III, whereas the cyclization is first-order with respect to the same reactant. Thus, we can mathematically show

what we intuitively know to be true: High concentrations of disubstituted reactant will favor polymerization

whereas low concentrations will favor cyclization. How can we determine at what concentration the favorability

of either reaction changes?

Figure 9.2: The difference between an intramolecular and intermolecular SN2 reaction.

In the scheme above, polymerization will be favored when reaction III occurs faster than reaction II, that

is, when the ratio of their rate constants is greater than one. The ratio of these rate constants has units of

molarity and is a characteristic of the particular system, known as the effective molarity (EM), defined as3

EM =
kintra
kinter

(9.0.3)

Intuitively, the ratio of kintra/kinter should make sense (as opposed to kinter/kintra) because the first-order

rate constant, kintra, has units s−1 whereas the second-order rate constant, kinter, has units M−1 s−1 so that

kinter should always be in the denominator to achieve the proper units for EM.

3Note that this definition is more precisely known as the kinetic effective molarity. A thermodynamic effective molarity may
also be defined as a ratio of equilibrium constants, however, we’ll come to see that these ratios are equivalent by definition.



9.1. FIRST-ORDER PROCESSES 117

Now, we consider their ratios. For brevity, allow i to represent the disubstituted reactant in consideration:

Rate of Reaction II:
d[i]

dt
= kintra[i]

Rate of Reaction III:
d[i]

dt
= kinter[i]

2

Reaction III/Reaction II:
kinter[i]

2

kintra[i]
=
kinter
kintra

[i] =
[i]

EM

Thus, we see that when [i] > EM, the polymerized product will be favored over the cyclized product. Conversely,

when [i] < EM, cyclization will occur more readily.

The Spatial Temporal Postulate

The spatial temporal postulate posits that “the rate of reaction between moieties A and B is proportional to the

time that A and B reside within a critical distance of one another.” Stated in words that actually make sense,

the likelihood of a reaction occurring depends on how close and how long two functional groups come together.

As a consequence, many intramolecular reactions are often faster than their intermolecular counterparts.

Within this postulate, the intuitive notion that time and space are critical factors for a reaction to occur

are on display. Consider reaction I in Figure 9.2, in which an SN2 reaction is undergone between an amine

and a halogenated alkane. The longer the amine and halogenated carbon spend close to one another with the

correct geometry, the more likely the nucleophilic attack is to happen.

This postulate is oftentimes used to explain catalytic mechanisms where the distance between a catalyst

and substrate determines binding, and the rate at which the catalyst can transform a substrate to product

determines its catalytic efficiency.

9.1 First-Order Processes

A first-order process is one which has a rate law rate = k[A] for some reactant A. As we’ve seen in Equation

(9.0.1), the rate law can be equivalently expressed as a differential equation of the form

rate = −d[A]

dt
= k[A]

which can be solved using separation of variables:

−d[A]

dt
= k[A]

∫ [A]f

[A]0

d[A]

[A]
= −

∫ t

0

kdt

ln[A]f = −kt+ ln[A]0

[A]f = [A]0e
−kt

Oftentimes this equation is rewritten using a time constant, defined as τ = 1/k, affording

[A] = [A]0e
−t/τ (9.1.1)

which is the integrated rate law for a first-order process. The time constant has plenty of utility, the first of

which is immediately recognizable because it has units of seconds, as opposed to the rate constant which has

units of s−1 for a first-order reaction. With the integrated rate law we can determine the half-life of a substance,

defined as the time it takes for exactly 50% of a substance to decay/transform/disappear etc. At this time,
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[A] = 1
2 [A]0 so that

1

2
[A]0 = [A]0e

−kt1/2

1

2
= e−kt1/2

ln

(
1

2

)
= −kt1/2

t1/2 =
ln 2

k
= τ ln 2 (9.1.2)

It is important to keep in mind that the half-life of a substance is always shorter than the time constant

(consider the expression for t1/2 in terms of τ in Equation (9.1.2) to convince yourself this is true). The half-life

is the time it takes for a substance to decay to half of the concentration it was initially and the time constant

is the time it takes for the substance to decay to 1/e ≈ 36.8% of what it was initially.

A common misconception about the half-life of a chemical is that at t1/2, half of the molecules in a

substance suddenly react and disappear. Instead, it’s actually the case that the most amount of a substance’s

decay happens within the first few moments of a transformation. Consider a graph of the integrated rate law

for a first order reaction:

Figure 9.3: Exponential decay for a first-order reaction with k = 5 s−1 and initial concentration [A]0 = 1 M.

It might be that the “continuous” nature of concentration that we illustrate in Figure 9.3 is obscuring

our intuition. After all, molecules of A are transformed discreetly into product, not continuously, as if 1/3 of

A can be transformed while leaving alone the remaining 2/3. Our motivation to “discretize” the rate of decay

of a chemical may be made easier with a Poisson point process, or just Poisson process.

I’ll preface the succeeding paragraph by saying I talk more than I probably should about probability.

So, if you’re not uber familiar with some of the notation it might be confusing. Not to fear, however, because

everything regarding the Poisson process is to bolster our understanding of first-order reactions.

Recall the Poisson distribution, a discrete probability distribution with rate parameter λ, defined on the

nonnegative integers:

P (x) =
e−λλx

x!
, x ∈ {0, 1, 2, . . . }

The random variable X counts the number of events that occurs in a given amount of exposure time, according

to the rate λ. Using our definitions regarding rate laws above, if we allow n to be the number of times a

chemical decays over the course of a fixed interval of time θ, the rate of decay becomes λ = kθ and we can
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model the decay using a Poisson distribution:

P (n) =
e−kθ(kθ)n

n!

The Poisson process models this sort of chemical transformation very well for numerous reasons. Firstly,

the sum of two Poisson distributions is another Poisson distribution.4 Using this fact, consider two random

variables which model the amount of decay for the same substance A. Let X count the decay at a time t and

let Y count the decay at a time t+ T . Then, if we let S = Y −X be the difference in decay between the two

states X and Y , we have that

P (S = n) =
e−kT (kT )n

n!

which implies the decay on the interval t + T is independent of the decay that happens on the interval of time

immediately before. This result is connected to the memoryless property of the Poisson distribution which says

that the distribution of points over a finite interval does not affect the distribution of points on any other finite

interval for a Poisson process. Intuitively, this result should make sense for the transformation of a chemical:

For a first-order reaction in which the rate law is dependent on a single species A, why would the rate law

change as the concentration of A changes? Obviously it wouldn’t, and the Poisson process agrees with this

intuition.

Okay last thing I’ll mention about the Poisson process: A Poisson distribution can be thought of as a

limit of binomial distributions.5 If we consider each point on the curve of Figure 9.3 separately, we can imagine

that at each infinitesimally small interval of time dt that a molecule of A has two options, either to decay or

not to decay. This is exactly a binomial! Think of flipping a coin except one side is life and the other is death.

In theory, we could model chemical decay using a binomial, I suppose, but the Poisson distribution is a better

choice because it does this intrinsically while also incorporating a rate parameter, something that we’ve seen

(and could have already intuited) is immensely important to the study of chemical kinetics.

9.2 Second-Order Processes

A second-order reaction is just like a first-order reaction, except second-order. The principle difference in the

case of a second-order reaction is that we have two types, one consisting of a reaction between a single species

and itself and the other consisting of a reaction between two unique species.

As we’ll come to see, the integrated rate laws for second-order processes (and nth-order processes for

that matter) depend on the initial concentrations of the reacting species. Intuitively, this should make sense:

In contrast to the first-order, unimolecular case, where we can think of a reactant just sort of “waiting” to

react and is independent of the concentrations of any other species in solution, in the second-order, bimolecular

case, the rate is dependent on how much of each reactant is present because two molecules are required for the

reaction to proceed.

9.2.1 Type I Second-Order Processes

A type I second-order process, as it will be referred to, is a reaction of the form

2 A −−→ P

4The proof of this isn’t difficult but it involves some concepts in probability that I am not willing to write here and explain.
So, if you want to know more you can either ask me or just look it up yourself.

5Another thing that has a relatively simple proof, but not one that is important enough for me to elaborate on here.
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with a corresponding rate law

rate =
d[P]

dt
= −1

2

d[A]

dt
= k[A]2 (9.2.1)

This reaction will be “type I” because it is defined by only a single species. Notably, second-order reactions

have what can be thought of as a “critical concentration,” in which the rate of reaction slows down or speeds

up appreciably. In the scheme above, this is achieved at [A] = 1 M. The rationale behind this comes from the

power of 2 in the expression for the rate law and is also somewhat mentioned in the discussion on effective

molarity in Section 9.0.1.

By Equation (9.2.1) we have the relationship

−d[A]

dt
= 2k[A]2

and so oftentimes we’ll refer to the effective rate constant, kf = 2k. Determining the integrated rate law from

this expression isn’t too hard:

−d[A]

dt
= kf [A]2

−
∫ [A]

[A]0

d[A]

[A]2
=

∫ t

0

kfdt

1

[A]
− 1

[A]0
= kf t

1

[A]
=

1

[A]0
+ kf t (9.2.2)

We can use Equation (9.2.2) to determine the half-life for a type I second-order process:

1
1
2 [A]0

=
1

[A]0
+ kf t1/2

t1/2 =
1

kf [A]0
(9.2.3)

The inverse proportionality between t1/2 and the initial concentration of the single reacting species is indicative

of the concentration dependence for processes of order > 1. Unlike the first-order unimolecular processes

which we can think of as happening at a fixed rate regardless of the concentration, in order for a second-order,

bimolecular reaction to occur, the reacting species must collide. Hence, a larger concentration of reacting species

affords collisions which happen more often and therefore a faster rate.

9.2.2 Type II Second-Order Processes

A type II second-order process, as it will be referred to, is a reaction of the form

A + B −−→ P

with a corresponding rate law

rate =
d[P]

dt
= −d[A]

dt
= −d[B]

dt
= k[A][B] (9.2.4)
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As we can see above, the rates of consumption for A and B are equal so that we can derive the relationship

∆[A] = ∆[B]

[A]0 − [A] = [B]0 − [B]

[B]0 − [A]0 + [A] = [B]

∆ + [A] = [B] (9.2.5)

where ∆ = [B]0 − [A]0 is defined to simplify some expressions to come. With this definition, however, we’re

left to discover the integrated rate law for two cases, where ∆ = 0 or ∆ 6= 0. Also, note that the ∆ used

in the first line is to denote a change in concentration and has a different meaning than ∆ in the expression

∆ = [B]0 − [A]0. Substituting Equation (9.2.5) into (9.2.4) affords an expression which can be integrated to

derive an expression for the concentration of reactants as a function of time:

−d[A]

dt
= k[A][B]

= k[A]
(
∆ + [A]

)

∫ [A]

[A]0

d[A]

[A]
(
∆ + [A]

) = −
∫ t

0

kdt (9.2.6)

The above integral is not exactly trivial, and you could just look it up in the textbook or on google, but where’s

the fun in that? Instead, we’ll evaluate it using fractional decomposition. First, suppose that we can rewrite

1

[A]
(
∆ + [A]

) =
α

[A]
+

β

∆ + [A]
(9.2.7)

where α and β are some constants to be determined. Cross-multiplying affords the relation

1 = α
(
∆ + [A]

)
+ β

(
[A]
)

= α∆ + [A]
(
α+ β

)
(9.2.8)

Here, notice that ∆ is a constant. It depends on the initial concentrations of each species A and B, however,

these concentrations are fixed. In contrast, [A] is dependent on time and is a variable. The left-hand side of

Equation (9.2.8) is purely constant so that we can rewrite

1 = α∆ ⇒ α =
1

∆

0 = [A]
(
α+ β

)
⇒ α = −β

Thus, Equation (9.2.7) can be rewritten as

1

[A]
(
∆ + [A]

) =
1

∆[A]
− 1

∆
(
∆ + [A]

)
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and substituted into (9.2.6) to assist integration:

∫ [A]

[A]0

(
1

∆[A]
− 1

∆
(
∆ + [A]

)
)
d[A] = −

∫ t

0

kdt

∫ [A]

[A]0

d[A]

∆[A]
−
∫ [A]

[A]0

d[A]

∆
(
∆ + [A]

) = −kt

1

∆

[
ln
(
[A]
)
− ln

(
∆ + [A]

)][A]

[A]0

= −kt

− 1

∆

[
ln

(
[A]

∆ + [A]

)
− ln

(
[A]0

∆ + [A]0

)]
= kt

− 1

∆

[
ln

(
[A]

[B]

)
− ln

(
[A]0
[B]0

)]
= kt

1

∆

[
ln

(
[B]

[A]

)
− ln

(
[B]0
[A]0

)]
= kt

1

[B]0 − [A]0
ln

(
[B]/[B]0
[A]/[A]0

)
= kt (9.2.9)

Equation (9.2.9) is the integrated rate law for a type II second-order reaction. Recall, however, that our

expression for ∆ held only when [B]0 6= [A]0 and therefore this expression is valid only when ∆ 6= 0. In the case

where [B]0 = [A]0, the concentrations of [A] and [B] reduce to the expression for a type I second-order reaction

with k = kf in Equation (9.2.2).

Finally, the idea of a half-life does not apply to reactions of this type. Unless the reactants are mixed in

stoichiometric proportion (for the reaction discussed in this section that would be 1:1), the concentrations of

the reacting species will not be half of their initial concentrations at identical times.

9.3 Nth-Order Processes of a Single Component

The principles governing the rate of an nth-order reaction of a single species are very similar to those of a

first-order reaction, aside from the order of reaction. In general, we could model the rate of reaction for this

sort of process as

rate = −d[A]

dt
= k[A]n (9.3.1)

for any integer n > 1. This can be solved in a similar manner to the corresponding equation for a first-order

process, using separation of variables:

−d[A]

dt
= k[A]n

∫ [A]

[A]0

d[A]

[A]n
= −

∫ t

0

kdt

− 1

n− 1

(
1

[A]n−1 −
1

[A]0
n−1

)
= −kt

1

[A]n−1 = (n− 1)kt+
1

[A]0
n−1 (9.3.2)
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Equation (9.3.2) is the integrated rate law for an nth-order process. The half-life for an nth-order reaction can

be found just as we did in the first-order case by allowing [A] = 1
2 [A]0:

1
(

1
2 [A]0

)n−1 = (n− 1)kt1/2 +
1

[A]0
n−1

2n−1 − 1

[A]n−1
0

= (n− 1)kt1/2

t1/2 =
2n−1 − 1

k(n− 1)[A]n−1
0

(9.3.3)

Notably, the half-life for an nth-order process depends on the initial concentration. Because of this, the concept

of a half-life becomes far less useful for reactions which aren’t first-order.

9.4 Parallel Pathways

Iodine Clock

We know turn our attention to reactions of the form,

G
k1−−⇀↽−− A

k2−−⇀↽−− H

where a single reactant A may react to form either of two products, G or H. The set of rate equations for this

sort of transformation may be modeled as

d[A]

dt
= −k1[A]− k2[A] = −(k1 + k2)[A]

d[G]

dt
= k1[A]

d[H]

dt
= k2[A]

We can solve for the concentration of A as a function of time first, and then substitute this expression into the

differential equations for G and H to solve for their time-dependent concentration as well. Solving for [A] as a

function of time,

d[A]

dt
= −(k1 + k2)[A]

∫ [A]

[A]0

d[A]

d[A]
=

∫ t

0

−(k1 + k2)dt

ln [A]− ln [A]0 = −(k1 + k2)t

[A] = [A]0e
−(k1+k2)t (9.4.1)

Equation (9.4.1) is the integrated rate law of a parallel pathway reaction. Since the rate constants k1 and k2

are restricted positive, the rate of decay of A will always be greater in a parallel pathway reaction than in the

first-order reaction of A to either of the two products. Intuitively, this makes sense because in this reaction

scheme there are more ways for A to be transformed than there are in just a normal first-order reaction.
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Now we can find expressions for [G] and [H] as a function of time. First, [G]:

d[G]

dt
= k1[A]

d[G]

dt
= k1[A]0e

−(k1+k2)t

∫ [G]

[G]0

d[G] =

∫ t

0

k1[A]0e
−(k1+k2)tdt

[G]− [G]0 = k1[A]0

[ −1

k1 + k2
e−(k1+k2)t

]t

0

[G] =
k1[A]0
k1 + k2

(
1− e−(k1+k2)t

)
+ [G]0

Notice that in the limit that k2 → 0, that is, when the reaction A −−→ H stops happening, all of [A]0 eventually

becomes G. This is sort of like a check to make sure our expression is correct. Hopefully unsurprisingly, we can

derive a similar expression for [H],

[H] =
k2[A]0
k1 + k2

(
1− e−(k1+k2)t

)
+ [H]0

and in the limit as k1 → 0 we see a similar result.

The key result that can be seen between these two expressions is that the fraction of A that is transformed

into either G or H depends on how quickly G and H are made relative to one another. This was indirectly implied

when referring to the final concentrations of product in the limit as one of the rate constants went to zero. If

we instead consider concentration of product in the limit that time is allowed to tend to infinity, we find that

[G]∞
[H]∞

= lim
t→∞

( k1[A]0
k1+k2

(
1− e−(k1+k2)t

)

k2[A]0
k1+k2

(
1− e−(k1+k2)t

)
)

=
k1

k2
(9.4.2)

Thus, we find that the ratio of products when the parallel pathway reaction is allowed to go to completion is

dependent on how quickly the products are created relative to one another. Equation (9.4.2) affords a results

very different from what we would expect from thermodynamics which would insist that the product which

prevails at equilibrium is the one with the lowest free energy, not necessarily the one which is formed more

rapidly. However, this result makes more sense when we consider the fact that no sort of reversibility among

the reactants and products was allowed, implying that even though G may have a lower free energy than H,

for example, G cannot react to form H in any way.

9.4.1 The Curtin-Hammett Principle

The Curtin-Hammett principle is concerned with product ratios for a parallel pathway reaction scheme of the

form

P1
slow−−−⇀↽−−− I1

fast−−⇀↽−− I2
slow−−−⇀↽−−− P2

where the activation energy for the interconversion of I1 and I2 is far less than either of the activation energies for

the formation of product. Then, the principle states that the ratio of the products is determined by the relative

heights of the highest energy barriers leading to the different products and is not significantly influenced by

the relative energies of the isomers, conformers, or intermediates formed prior to the highest energy transition

states.

In Figure 9.4 we have a reaction in which a pair of intermediates, I1 and I2, can readily equilibrate because

their activation energies to form either of P1 or P2 is much higher. By the Curtin-Hammett principle, since the

activation energy to go from I1 to P1 is less than that of the competing reaction, the major product in Figure

9.4 will be P1.
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Figure 9.4: Reaction coordinate diagram demonstrating the Curtin-Hammett principle.

This principle has highly beneficial implications in all sorts of areas. The reason I know about this

principle is because of the following question: We all know and love the Wittig reaction from Orgo 2, but the

“brother” reaction, the Horner-Wadsworth-Emmons (HWE) reaction, hosts as much if not more utility. The

major contrast between the two couplings is the stereochemistry of the products. While the Wittig reaction

utilizes a phosphonium ylide to convert carbonyls to Z-alkenes, the HWE reaction uses a phosphonate carbanion

to produce the E-alkene.

Figure 9.5: The Wittig product, I, in contrast with the HWE product, II. The only difference comes from the
type of reagent being used which has an effect on the energy of the transition state for each reaction.

The difference between which is the major isomer for these reactions can be explained using the mecha-

nisms for either of these reactions and the Curtin-Hammett principle. Obviously I could explain it if I wanted

to, but it’s beyond the scope of this course so I’ll spare you the details.

9.5 Reversible Reactions

Near the end of Section 9.4, the contrasting results between kinetics and thermodynamics we arrive at for a

reaction which is allowed to reach equilibrium is semi-explained on the basis of irreversibility between reactants

and products. Now, we’ll consider a reversible reaction and come to see that the kinetic result agrees with our

thermodynamic intuition.

Consider a reversible reaction

A
k1, k−1−−−−⇀↽−−−− B
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with forward rate constant k1 and reverse rate constant k−1. The rate of formation for A and B can be modeled

as usual by

d[A]

dt
= −k1[A] + k−1[B]

d[B]

dt
= k1[A]− k−1[B]

At equilibrium, we’d expect that the concentrations of each species will stop changing, that is, d[A]/dt =

d[B]/dt = 0. Then, using either of the two rate equations we have that k1[A]eq = k−1[B]eq and therefore

[B]eq

[A]eq
=

k1

k−1
= Keq (9.5.1)

This equation is known as detailed balance, and it connects the mathematical results from kinetics to our

thermodynamic intuition. More formally, it tells us that at equilibrium, each elementary process within a set

of reactions is in equilibrium with its reverse process and that the equilibrium constant may be expressed in

terms of rate constants.

Most formally, the principle of detailed balance states that at equilibrium, the forward rate of each step

is equal to the reverse rate of that step. It’s been recognized and proven in both classical mechanics and

quantum mechanics the principle of microscopic reversibility, that is, the equations of mechanics are time-

reversal invariant. This implies that for every possible type of interaction between particles the exact reverse

is also possible.

Detailed balance also allows us to make explicit appeals to thermodynamics. If B is more stable than A

and therefore Keq > 1, the formation B will occur faster than the formation of A.

As far as the behavior of a reaction away from equilibrium goes, we turn back to the language of differential

equations. By the conservation of mass, we have that [B] = [A]0 − [A] (or, equivalently, [A] = [B]0 − [B]. Here

we’ll assume that [B]0 = 0 so the former equation for [B] will be used) which allows us to solve the expression

for d[A]/dt and express [A] as a function of time:

d[A]

dt
= −k1[A] + k−1([A]0 − [A])

= −k1[A] + k−1([A]0 − [A])

˙[A] + (k1 + k−1)[A] = k−1[A]0 (9.5.2)

6The solution to this differential equation isn’t quite trivial, so I’m gonna provide the solution: This equation

is classified as a first-order, linear ordinary differential equation and can be solved using an integrating factor.

For the expression above, the integrating factor is defined as

e
∫

(k1+k−1)dt = e(k1+k−1)t

and when Equation (9.5.2) is multiplied through by this factor, a nice simplification is afforded by the product

6Note that in Equation (9.5.2) I used the notation ˙[A] to express the derivative of [A] with respect to time. In general, this
notation always refers to a derivative with respect to time.
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rule:

e(k1+k−1)t ˙[A] + e(k1+k−1)t(k1 + k−1)[A] = e(k1+k−1)tk−1[A]0

d

dt

[
e(k1+k−1)t[A]

]
= e(k1+k−1)tk−1[A]0

e(k1+k−1)t[A] =

∫
k−1[A]0e

(k1+k−1)tdt

e(k1+k−1)t[A] =
k−1[A]0
k1 + k−1

e(k1+k−1)t + C

[A] =
k−1[A]0
k1 + k−1

+ Ce−(k1+k−1)t (9.5.3)

In the second line of the sequence above, the product rule was invoked “backward” to allow simple integration

by the fundamental theorem of calculus. Equation (9.5.3) is nearly our final answer, except for the constant

C. To evaluate the constant in terms of physical characteristics of the system we can use the condition that at

time t = 0, the concentration of A must be [A] = [A]0. Then,

[A]0 =
k−1[A]0
k1 + k−1

+ Ce−(k1+k−1)(0)

C = [A]0 −
k−1[A]0
k1 + k−1

C = [A]0

(
k1

k1 + k−1

)

Plugging this result back into Equation (9.5.3) affords our final result for the concentration of [A] as a function

of time:

[A] = [A]0

(
k1e
−(k1+k−1)t + k−1

k1 + k−1

)
(9.5.4)

While at first glance it may look complicated, Equation (9.5.3) is still a simple exponential decay with time

constant τ = 1/(k1 + k−1). In contrast to previous examples, however, in the limit as t→∞ the concentration

of [A] remains nonzero since the reaction is reversible.

9.6 Transition State Theory

Transition state theory (TST) is directed toward the calculation of rate constants at equilibrium. Inspired

by thermodynamics, TST explains the rates of elementary reactions under the assumption that the activated

complexes of a transition state are in quasi-equilibrium with the reactants. Then, the rate of reaction is

directly proportional to the concentration of these complexes multiplied by some frequency with which they

are converted to products.

The basic ideas of TST can be summarized as follows:

1. Rates of reaction can be studied by examining activated complexes near the transition state.

2. The activated complexes are in quasi-equilibrium with the reactant molecules.

3. The activated complexes can convert into products, and kinetic theory can be used to calculate the rate

of this conversion.

Arguably the most important feature of this theory is the notion that reactants can be thought of as in

equilibrium with the transition state complex as opposed to being in equilibrium with the product. This idea

affords a reaction scheme of the type

A + B −−⇀↽−− [A···B]‡ −−→ P
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where AB‡ represents the transition state the reaction passes through. This model begs the question, what is

the probability of being in the transition state? Or, how can we estimate the “equilibrium” concentrations of

reactants and the transition state complex? We’ll start by defining a new quantity, the equilibrium constant

for the reaction between the reactants and transition state:

[A···B]
‡

[A][B]
= K‡ = e−∆G‡/RT (9.6.1)

∆G‡ is the free energy change going from the reactants to the transition state and will be positive by the nature

of the instability of the transition state complex. This is a good start to characterizing the energy associated

with the transition state complex, however, it’s not a rate!

To go about solving for the quantity we care about, the rate constant, we turn to Eyring, Evans, and

Polanyi (all really smart scientists) who illustrated that the rate of a reaction is directly proportional to some

frequency factor with which the transition state complexes are converted to products. I mentioned it only a

few moments ago but I’ll do it again just because it’s the basis on which TST is founded, the notion that the

rate constant can be determined this way relies on the fact that there is a quasi-equilibrium between reactants

and the transition state complex.

The most basic assumption is that bonds of a reactant act like a harmonic oscillator, such that there ener-

gies can be modeled as U = 1
2kx

2 where U is the potential energy stored in the bond, k is some proportionality

constant, and x is the bond length. From classical mechanics we have the result that the angular momentum of

the oscillator ω is given by ω =
√
k/µ where µ acts as the “reduced mass” of the bond. While this information

is all helpful, it won’t be of great use in trying to find the rate constant for the reaction between the reactants

and the transition state complex.

To make our lives harder/more fun, quantum mechanics tells us that the ground state energy of a harmonic

oscillator must be at least

E =
(∆p)2

2m
+

1

2
m(ω∆x)2

which is a sum of the kinetic and potential energies, and the uncertainty principle is invoked for the position and

momentum of the particle. Recall that the Heisenberg uncertainty principle formally states that ∆x∆p ≥ ~/2.

Taking the lower limit of this inequality (that is, making it an equality), we’re left with

E =
~2

8m(∆x)2
+

1

2
m(ω∆x)2 (9.6.2)

and by differentiating the energy with respect to the uncertainty in position we can find the value of ∆x such

that the energy will be minimized, i.e., the energy of the ground state:

∂E

∂∆x
=

∂

∂∆x

[
~2

8m(∆x)2
+

1

2
m(ω∆x)2

]

0 = − ~2

4m(∆x)3
+mω2∆x

~2

4m(∆x)3
= mω2∆x

∆x =

√
~

2mω



9.6. TRANSITION STATE THEORY 129

Substituting this result back into Equation (9.6.2) affords the ground state energy of a harmonic oscillator:

Egs =
~2

8m

(√
~

2mω

)2 +
1

2
mω2

(√
~

2mω

)2

=
~ω
4

+
~ω
4

=
~ω
2

(9.6.3)

Why is that at all useful? I’m told it will be next semester. For now, though, it tells us that the ground

state energy is simply Egs = 1
2~ω. In addition to this fact, recall from all the way back in Section 7.2.1 in our

discussion of the microcanonical ensemble, Equation (7.2.13) tells us that the average amount of kinetic energy

carried per harmonic mode of an oscillator is kBT/2. To think that Dr. Fried didn’t even cover this derivation

in class and yet it’s come up time and time again in later lectures and even on some exams blows my mind,

but that’s besides the point. What is not besides the point, however, is the relationship we’re left with:

~ω
2

=
kBT

2

for the ground state energy of a single harmonic mode associated with this harmonic oscillator.7 Before arriving

at our desired result, recall that the linear frequency, ν, of an oscillator is related to the angular frequency by

the relationship ν = 2πω (also illustrated in Figure 9.6) so that we’re left with

~ω
2

=
~ν
4π

=
kBT

2
hν

2
=
kBT

2

ν =
kBT

h
(9.6.4)

Equation (9.6.4) (notice the units... it’s in s−1) is the frequency factor associated with the transformation of

the transition state complex into product, also known as Eyring’s frequency factor.

Finally, we can write an expression for the rate constant associated with crossing of the activated energy

barrier as

k =
kBT

h
e−∆G‡/RT (9.6.5)

where kBT/h is the frequency factor which describes the frequency with which molecules are vibrating about,

weighted down by a Boltzmann factor which characterizes the probability that a particle will have sufficient

energy to actually cross the activation energy barrier. This equation is also known as the Eyring equation.

The benefit of the Eyring equation is that is allows us to calculate reaction rates based on thermodynamic

properties of a system. In particular, by rearranging Equation (9.6.5) we can show that

kh

kBT
= e−∆G‡/RT

ln

(
kh

kBT

)
=
−∆G‡

RT

ln

(
kh

kBT

)
=

(−∆H‡

R

)
1

T
+

∆S‡

R
(9.6.6)

7The “harmonic mode” refers to the frequency of the associated wave. Waves can have all sorts of frequencies! Some we can
hear, and others we can’t. What’s important here is to recognized that waves associated with electrons and other particles are
allowed to have only certain harmonic modes because their energies are quantized. Thus, when we refer to a “harmonic mode”
we’re referring to a particular quantum of energy associated with a wave. The ground state of a particle is one of these modes.
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Figure 9.6: I’ve had this picture saved on my desktop for a while cause I think it’s pretty helpful. The one
relationship that we did need between the linear and angular frequencies is on there, as well as many more that
are not nearly as useful for us.

which is the Eyring plot, affording a graph of ln(kh/kBT ) vs. 1/T with a slope proportional to the enthalpy

of activation and an intercept proportional to the entropy of activation. Notice the immense similarity of the

Eyring plot to the van’t Hoff plot.

This equation is helpful because it tells us that the temperature dependence of a chemical reaction is a

reflection of whether or not the transition state is enthalpically or entropically expensive to create. The entropic

expense is related to how conformationally restricted the transition state is and the enthalpic expense comes

from how much weaker/stronger the bonds of the transition state are or how much steric repulsion/hindrance

is present.

During lecture Dr. Fried briefly discusses Arrhenius theory and how lame it is which is why I’ve opted to

ignore it here as well. Notice that, in essence, we’re performing the same exact experiment as we would have

using the Arrhenius model, however, using TST we’re gaining much more insight into the thermodynamics of

the reaction.

Here’s a question regarding kinetics and transition state theory: Consider the following reaction scheme.

P1
k1←−− R

k2−−→ P2

Suppose that at room temperature, k1 = 1 s−1 and k2 = 4 s−1. Moreover, suppose that [R0] = 1.0 M. What

are the concentrations of R, P1, and P2 as t→∞? Well, we could answer this question by writing out the rate

laws and doing some calculus, similar to the derivation of Equation (9.4.1). However, I’ve already done this

derivation (in Equation (9.4.1), obviously)! So instead we can argue that since these reactions are not reversible

the ratio of products must followed detailed balance, such that

[P1]

[P2]
=
k1

k2
=

1

4
= 0.25

Moreover, since neither reaction is reversible we know that all of the reactant will be converted to product as

t→∞ which allows us to work out that at equilibrium, [P]1 = 0.2 M and [P]2 = 0.8 M.

Now, suppose that we have a single molecule of the reactant R, and at t = 0 it becomes “activated” so
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that it is allowed to react. Sketch curves corresponding to the probability the R molecule still exists, and that

P1, after a given time, now exists. I did this here using Python to make it look sorta nice, using the parameters

as they’re described in the question.

Figure 9.7: Probabilities of existence for each species in the reaction scheme.

The important aspects of Figure 9.7 are that the total waiting time τ = 1/(k1 + k2) for R is 0.2 s so that

after that amount of time, R has decayed to 1
e ≈ 36% of its initial concentration. Similarly, make sure to note

that in the graph for the probability of P1 existing, the plot begins at 0 and increases exponentially to 0.2, the

maximal concentration at equilibrium.

These probabilities are nice and all, but we can paint a slightly more detailed picture of the thermody-

namics of these reactions using transition state theory. So, using TST, derive an equation for the product ratio

[P]1/[P2] as function of temperature and activation barriers, ∆G‡. Again, we’ll invoke detailed balance to do

this. Moreover, we’ll make use of Equation (9.6.5), the Eyring equation, to express the rate constants in terms

of activation barriers:

[P1]

[P2]
=
k1

k2
=

kBT
h e−∆G‡1/RT

kBT
h e−∆G‡2/RT

= exp

{
−(∆G‡1 −∆G‡2)

RT

}

= exp

{−∆∆G‡

RT

}

Great! Now, suppose that P2 is a coveted molecule and so we’re trying to design our synthesis in order

to maximize the production of it. Further suppose we discover that increasing the temperature causes the

selectivity of P2 to increase. Use TST to infer what this implies about the relative values of the transition state

activation parameters, ∆H‡ and ∆S‡, between the two reactions. To discover more about the parameters we’ll

turn to the Eyring equation again, in conjunction with detailed balance, this time substituting ∆G‡ for ∆H‡

and ∆S‡.

[P1]

[P2]
=

exp
{
−(∆H‡1−T∆S‡1)

RT

}

exp
{

(−∆H‡2−T∆S‡2)
RT

}

= exp

{
−(∆H‡1 −∆H‡2)

RT

}
exp

{
∆S‡1 −∆S‡2

R

}

Notice that in order for the selectivity of P2 to increase with temperature, we require that ∆H‡2 > ∆H‡1 . This
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way, the exponential term containing the enthalpies gets smaller (in absolute value) with temperature and the

product ratio [P]1/[P2] decreases. We’ve talked about this before, but whenever we consider the temperature

effects on a reaction the enthalpy should come to mind. A greater enthalpy of activation would imply that

the reaction is “more sensitive to temperature.” This can also be rationalized using Le Chatelier’s principle: if

a reaction is highly exothermic, for example, then even a small increase in temperature will greatly shift the

equilibrium distribution towards the reactants.

Now that’s all fine and dandy, however, if we purport that ∆H‡2 > ∆H‡1 then that would imply reaction 2

were slower than reaction 1 under the initial conditions (using the Eyring equation to help guide our logic once

again). Clearly, this contradicts the given information because we know that k2 > k1. Hence, the only way for

reaction 2 to be faster than reaction 1 under these given conditions granted ∆H‡2 > ∆H‡1 is that ∆S‡2 > ∆S‡1
to begin with.

Finally, suppose that we run some experiments to acquire some data and find that ∆S‡2 = −14 cal/mol/K.

Suppose that we also know that the standard entropy of the reactant R is S◦ = 350 J/mol/K. At room

temperature, how many microstates are associated with TS2, the transition state between R and P2? We can

determine the number of microstates using Boltzmann’s equation, however, we first need to find the entropy

associated with the transition state. The entropy is given by

S‡ = S◦ + ∆S‡

If you’re having trouble visualizing this, trying drawing a reaction coordinate diagram. Making sure to convert

units, we’re left with

S‡ = 350 J/mol/K− 14cal/mol/K(4.184 J/cal) = 291.42 J/mol/K

Then, we can find the number of microstates associated with the transition state of P2 as

S‡2 = NkB lnW2

W2 = exp

{
291.42

NkB

}
≈ 1.68× 1015

Although we can calculate the transition state entropy at standard state conditions, what quantity would

we need to know in order to see how S‡2 changes with temperature? To see this, recall the second law of

thermodynamics which states

dS =
dq

T

for a reversible reaction. With a little bit of calculus we can show that

S =

∫ T

T0

dq

T
=

∫ T

T0

CP dT

T
= CP ln

(
T

T0

)
+ C

S(T ) = S(T0) + CP ln

(
T

T0

)

where CP is the heat capacity of the material. Since everything involved in this equation is a state function,

we have

∆S(T ) = ∆S(T0) + ∆CP ln

(
T

T0

)

which also holds for the transition state

∆S‡(T ) = ∆S‡(T0) + ∆C‡P ln

(
T

T0

)



9.7. CONSECUTIVE REACTIONS 133

Thus, in order to determine how S‡2 changes with temperature we require the heat capacity of the transition

state.

9.6.1 Hammond’s Postulate

9.7 Consecutive Reactions

Consecutive reactions, or sequential reactions, occur through a series of steps of which reactants are transformed

into intermediates, which in turn are transformed into product. The scheme for a consecutive reaction may

look like

A
k1−−→ I

k2−−→ P

where A is a reactant, I is an intermediate, and P is the product. We can write rate laws for each step in the

process as,

d[A]

dt
= −k1[A] (9.7.1)

d[I]

dt
= k1[A]− k2[I] (9.7.2)

d[P]

dt
= k2[I] (9.7.3)

which follow naturally from the elementary reaction steps in which a given species participates. To make solving

a system of differential equations such as this possible, we’ll begin by making two assumptions: Firstly, suppose

that only A is present initially so that [I]0 = [P]0 = 0 M. With this, the first reaction in the series simplifies to

the case of a first-order reaction and the concentration of A as a function of time simplifies as Equation (9.1.1)

to

[A] = [A]0e
−k1t (9.7.4)

With this expression we can solve Equation (9.7.2) for the concentration of I as a function of time.

Plugging in our new expression for [A],

d[I]

dt
= k1[A]0e

−k1t − k2[I]

˙[I] + k2[I] = k1[A]0e
−k1t (9.7.5)

In Section 9.5 we solved a similar sort of differential equation by the method of integrating factors. We’ll take

the same approach here. First notice that the integrating factor for this expression is given by

e
∫
k2dt = ek2t

and multiplying Equation (9.7.5) through by this factor affords

ek2t ˙[I] + k2e
k2t[I] = k1e

k2t[A]0e
−k1t

d

dt

[
ek2t[I]

]
= k1[A]0e

(k2−k1)t

ek2t[I] =

∫ t

0

k1[A]0e
(k2−k1)tdt

ek2t[I] =
k1

k2 − k1
[A]0e

(k2−k1)t + C

[I] =
k1

k2 − k1
[A]0e

−k1t + Ce−k2t
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At t = 0, [I]0 = 0 M and therefore

0 =
k1

k2 − k1
[A]0 + C

C = − k1

k2 − k1
[A]0

so that we have an expression for the concentration of [I] as a function of time given by

[I] =
k1[A]0
k2 − k1

(
e−k1t − e−k2t

)
(9.7.6)

Lastly, we can use Equations (9.7.4) and (9.7.6) to solve for the concentration of P as a function of time.

First, notice that the concentration of all species at any time t must be no greater than the initial concentration

of A8 so that we’re left with the relation

[A]0 = [A] + [I] + [P]

[P] = [A]0 − [A]− [I]

Thankfully this isn’t a differential equation so we won’t need to do any cheeky integration. Instead, we can

substitute our expressions for [A] and [I] directly:

[P] = [A]0

(
1 +

k1e
−k2t − k2e

−k1t

k2 − k1

)
(9.7.7)

Maximum Intermediate Species Concentration

For a reaction of the form,

A
k1−−→ I

k2−−→ P

we can use Equation (9.7.6) and the fact that for a maximum concentration it must be the case that d[I]/dt = 0

to determine the time at which the maximum possible intermediate species concentration occurs:

d[I]

dt
=

d

dt

[
k1[A]0
k2 − k1

(
e−k1t − e−k2t

)]

0 =
k1[A]0
k2 − k1

d

dt

[(
e−k1tmax − e−k2tmax

)]

=
k1[A]0
k2 − k1

(
− k1e

−k1tmax + k2e
−k2tmax

)

k1e
−k1tmax = k2e

−k2tmax

e−(k1−k2)tmax =
k2

k1

−(k1 − k2)tmax = ln

(
k2

k1

)

tmax =
1

k1 − k2
ln

(
k1

k2

)
(9.7.8)

8This reaction is a special case since all stoichiometric coefficients are 1. If this were not the case, we would need to divide the
species concentrations by their reaction coefficients to ensure an equality of this type holds.
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Earlier in this section we noted that we could simplify the system of differential equations

d[A]

dt
= −k1[A]

d[I]

dt
= k1[A]− k2[I]

d[P]

dt
= k2[I]

by making two assumptions yet only ever mentioned one. The second assumption is that the concentration

of I is transient, that is, it is slowly created and rapidly depleted so that [I] never “builds up” and we can

approximate d[I]/dt ≈ 0. This is also known as the steady state approximation. Then, by Equation (9.7.2).

0 = k1[A]− k2[I]

[I] =
k1[A]

k2
=
k1[A]0
k2

e−k1t

which affords an expression for the concentration of P as a function of time by Equation (9.7.3):

[P] = k2[I] = k1[A]0e
−k1t (9.7.9)

Thus, we see that using the steady state approximation affords an expression for the concentration of P as a

function of time consistent with the first-order decay of the reactant A. An important aspect of the steady state

approximation to keep in mind is that it has nothing to do with equilibrium. Although the concentration of

intermediate is effectively constant, the concentrations of reactant and product are rapidly changing throughout

the same interval of time.

9.8 Enzyme Kinetics

Enzyme kinetics is simply the study of enzymatic rates. In many cases, the rate of a reaction and how the

rate changes in different conditions reveal the path followed by the reactants and are therefore indicative of the

reaction mechanism. In all of our discussion on enzyme kinetics we’ll analyze reactions of the form

E + S
k1, k−1−−−−⇀↽−−−− ES

k2−−→ P + E (9.8.1)

where E, S, ES, and P are the enzyme, substrate, enzyme-substrate complex, and product, respectively. The

enzyme-substrate complex is sometimes also referred to as the Michaelis complex. Additionally, the rate

constant k2 is sometimes also referred to as the catalytic constant, denoted kcat.

9.8.1 The Michaelis-Menten Model

The kinetics of reaction (9.8.1) may be modeled simply and elegantly, using the Michaelis-Menten model,

which estimates the formation of product from ES as a first-order process so that we have the rate,

d[P]

dt
= k2[ES] (9.8.2)

also referred to as the velocity of reaction.9 The initial velocity v0, is then the rate of product formation at

some initial time t = t0 where [ES] = [ES]0. The overall rate of production of ES is the difference between rates

9The “velocity” of a reaction, more generally, refers to the rate of product formation for any chemical reaction, not just enzyme
catalysis.
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of the elementary reactions leading to its appearance and those resulting in its disappearance:

d[ES]

dt
= k1[E][S]− (k−1 + k2)[ES]

If we assume steady state for the concentration of ES just as we did in Section 9.7, this expression simplifies

as,

k1[E][S] = (k−1 + k2)[ES]

[E][S]

[ES]
=
k−1 + k2

k1
= Km (9.8.3)

where Km is referred to as the Michaelis constant. Note that although Km looks a lot like a dissociation

constant, it isn’t quite the same because of the transformation of ES
k2−−→ E + P. If the only reaction taking

place was the reversible transformation E + S −−⇀↽−− ES then Km would in fact be a dissociation constant, but

this is not the case.

In general, the quantities [ES] and [E] are not easily measurable, however, the total enzyme concentration

[E]T = [ES] + [E]

is usually known. The total enzyme concentration is equal to the initial enzyme concentration, also, unless

more enzyme is added throughout the duration of a reaction. Though, I can’t think of any reason why not all

of the enzyme would be added at once. Thus, Equation (9.8.3) can be rewritten as

Km[ES] = [E][S]

Km[ES] = ([E]T − [ES])[S]

[ES](Km + [S]) = [E]T[S]

[ES] =
[E]T[S]

Km + [S]

and substituting this result into Equation (9.8.2) affords the velocity of the reaction as a function of some

directly measurable quantities:

v =
d[P]

dt
=
k2[E]T[S]

Km + [S]
(9.8.4)

The initial velocity of the reaction is a direct consequence of this expression, also:

v0 =
k2[E]0[S]0
Km + [S]0

(9.8.5)

Equation (9.8.4) motivates us to define the point at which the maximal velocity of reaction occurs, vmax.

The maximal velocity happens at high substrate concentrations when the enzyme is saturated, that is, when

the enzyme is entirely in the ES form. Then, vmax = k2[E]0 and we obtain,

v0 =
vmax[S]0
Km + [S]0

(9.8.6)

known as the Michaelis-Menten equation. Equation (9.8.6) clearly illustrates the fact that the initial velocity

of reaction is half-maximal when [S]0 = Km

It’s important to keep in mind that the Michaelis constant is unique for every substrate-enzyme pair. The

magnitude of Km varies widely with the identity of the enzyme and the nature of the substrate, as well as the
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temperature and pH of the solution. We can express Km in Equation (9.8.3) alternatively as

Km =
k−1

k1
+
k2

k1
= Ks +

k2

k1
(9.8.7)

where Ks is the dissociation constant of the enzyme-substrate complex. As Ks (and therefore also Km)

decreases, the enzyme’s affinity for a substrate increases so that we can think of Km being a measure of the

affinity of the enzyme for its substrate, provided that k2/k1 is small compared to Ks.

In the beginning of this section I mentioned that k2 is sometimes also referred to as the catalytic constant,

kcat. More formally, kcat is defined as,

kcat =
vmax
[E]0

(9.8.8)

also known as the turnover number, because it is the number of reactions that each active site of the enzyme

catalyzes per unit time. For enzymes with more complicated mechanisms than the one considered in the

Michaelis-Menten model, kcat is not always the same as k2, and instead may be a function of several rate

constants.

Keeping in mind that Km is the concentration of substrate at which the velocity of the reaction is half-

maximal, recognize that when [S] � Km, very little ES is formed. Consequently, [E] ≈ [E]0 so that Equation

(9.8.5) reduces to

v0 =
k2[E]0[S]0
Km

≈
(
kcat
Km

)
[E][S]0 (9.8.9)

Here, the ratio kcat/Km acts as a second-order rate constant for the enzymatic reaction. In particular this

ratio is a measure of the catalytic efficiency of the particular enzyme-substrate pair being studied. There is an

upper limit on the catalytic efficiency known as the diffusion-controlled limit, near 108 to 109 M−1s−1. Enzyme-

substrate pairs with kcat/Km ratios near this limit catalyze a reaction almost every time they encounter one

another and hence have achieved a state of virtual catalytic perfection.

Here is an example problem regarding enzyme kinetics and some transition state theory. Imagine a

hypothetical reaction, S −−→ P, which has a rate constant k1 = 10−6 s−1 at T = 298.15 K. Suppose the

rate of reaction doubles when the reaction is performed at 50◦C as opposed to 25◦C. What is the enthalpy of

activation? Using transition state theory we can compare these two reaction rates. Recall Equation (9.6.5)

which allows us to write a ratio of the rate constants as

k2

k1
=

kBT2

h exp
{
−∆G‡/RT2

}
kBT1

h exp {−∆G‡/RT1}

=
T2exp

{
−∆G‡/RT2

}

T1exp {−∆G‡/RT1}

where k2 is the reaction rate when the temperature is raised, and T1 and T2 represent 25◦C and 50◦C, respec-

tively. Importantly, notice that although the temperature is changing the change in Gibbs free energy to enter

the transition state (which we can also think of as the activation energy) is not changing. Then, substituting
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k2 = 2k1, we can evaluate the enthalpy of activation:

2k1

k1
=
T2exp

{
−∆G‡/RT2

}

T1exp {−∆G‡/RT1}
2T1

T2
= exp

{−(∆H‡ − T2∆S‡)
RT2

− −(∆H‡ − T1∆S‡)
RT1

}

2T1

T2
= exp

{−∆H‡

RT2
+

∆H‡

RT1

}

−R ln

(
2T1

T2

)
= ∆H‡

(
1

T2
− 1

T1

)

Evaluating this expression at T1 = 298.15 K and T2 = 323.15 K as given in the problem affords ∆H‡ = 19.63

kJ/mol as the enthalpy of activation for this reaction.

The one-way reaction illustrated above is nice, however, reality is rarely that simple. Suppose the substrate

S can undergo an undesired reaction to a byproduct B, which occurs naturally at the rate kb = 10−5 s−1.

Fortunately, an enzyme E can accelerate the desired reaction E + S −−→ ES −−→ E + P with rate constant

kcat = 103 s−1 and Michaelis constant KM = 10 µM. How much of this enzyme is needed to ensure that 99%

of S is converted to P if [S]0 = 1 mM and T = 25◦C? Here we’ll need to consider the rates of reaction in either

direction:

d[B]

dt
= kb[S]

d[P]

dt
= kcat[ES] =

kcat[E]0[S]0
Km + [S]0

where Equation (9.8.6) was used to rewrite the rate of formation of the product P. Before continuing, notice

that [S]0 � KM so that the denominator in the rate of formation of P is effectively just [S0]. Then, finding the

product ratio of the two products B and P is as simple as taking the ratio of their rates of formation:

d[B]/dt

d[P]/dt
=

kb[S]
kcat[E]0[S]0
Km+[S]0

≈ kb[S]
kcat[E]0[S]0

[S]0

1

99
=

kb[S]

kcat[E]0

1

99
=

(10−5 s−1)(0.001 M)

(103 s−1)[E]0

[E]0 = 9.9× 10−10 M

Thus, we require that [E0] ≈ 1 nM in order to achieve 99% conversion to the desired product.

With the complication of a competing side reaction introduced, let’s now ignore it. Instead, consider the

free energy activation barrier of the reaction with and without an enzyme present. By how much does the

enzyme lower the activation energy barrier for the S −−→ P reaction at standard conditions? In other words,

we’re looking for the quantity ∆∆G‡. Hopefully by now it’s obvious, but to determine this quantity we’ll turn
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to transition state theory. In particular, the Eyring equation:

kcat
k1

= exp

{−∆∆G‡

RT

}

∆∆G‡ = −RT ln

(
kcat
k1

)

= −(8.3145)(298.15) ln

(
103

10−6

)

= −51.37 kJ/mol

Thus, the enzyme lowers the free energy activation barrier by 51.37 kJ/mol. I’ll also point out that the

expression for the change in activation energy is nothing we haven’t seen before due to detailed balance, with

the relationship kcat/k1 = Keq.

The tangent regarding detailed balance aside, suppose that we perform some more experiments and

determine that the reaction rate with the enzyme present doubles from 25◦C to 50◦C. Given this information,

calculate ∆S‡cat. The subtle yet important aspect to this question is recognizing that the temperature dependence

of the catalyzed reaction is the same as the uncatalyzed reaction. That is to say, the enthalpy of activation is the

same whether or not the enzyme is present. In the very first question we considered where we wanted to find the

enthalpy of activation, we could ignore the entropy because its contribution does not change with temperature

(again, refer to the Eyring equation). In this case, however, the change in entropy is (almost definitely) changing

with the introduction of an enzyme because the substrate S must bind to it, therefore limiting it’s number of

possible configurations. That is all to say, with the enzyme present we have ∆H‡ = 19.63 kJ/mol and the

change in entropy can be found by applying transition state theory to the catalyzed rate constant only at room

temperature:

kcat =
kBT

h
e−∆G‡cat/RT

∆G‡cat = −RT ln

(
kcath

kBT

)

= 55.9 kJ/mol

Now we can use the classical definition of the change in Gibbs free energy (along with the enthalpy of activation

derived earlier) to find the change in entropy of the catalyzed transition state:

∆G‡cat = ∆H‡cat − T∆S‡cat

55.9 kJ/mol = 19.63 kJ/mol− 298.15∆S‡cat

∆S‡cat = −121.65 J/mol

This is change in entropy for the catalyzed reaction to the transition state. I think it’s amazing how all of

these ideas and calculations we’ve done here rely on the theory that the reactants are in “equilibrium” with

the transition state, even though in some aspects of organic chemistry we’re taught to think that the transition

state is necessarily a real state of the system, only an abstraction to help explain mechanisms.

Before finishing let’s connect everything we’ve learned about this enzyme. In particular, describe in

thermodynamic terms how this enzyme works to accelerate the reaction and propose a molecular mechanism

as to how it might achieve this effect. Notice that we’ve already discussed two aspects of the system. Firstly,

the enthalpy of activation is not changed upon introduction of the enzyme and secondly (which is almost a

consequence of the first thing), the enzyme catalyzes the reaction by lowering the entropic barrier of the activated

complex. So, we wouldn’t be crazy to propose a mechanism that focuses on lowering the entropic barrier of

the reaction. How could an enzyme do this? Intuitively, an enzyme limiting the number of configurations of

a substrate makes sense (think “lock and key” model). In order to have a limited number of configurations
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actually help the reaction proceed would require that the enzyme limits the substrate to configurations which

closely resemble the activated state and final product (Hammond’s postulate). So, we might propose that the

mechanism used by the enzyme brings together functional groups of the substrate which are required to react in,

thereby limiting the total possible number of microstates of the substrate while not losing any which encourage

a reaction.

This is actually a commonly used strategy by enzymes, though it is seldom the case that lowering the

entropic barrier is the only contribution to catalysis. An interesting case of an enzyme that does in fact ignore

trying to change the enthalpic barrier, though, are ribosomes, which functions nearly exclusively by entropic

catalysis.

9.8.2 Enzyme Inhibition

9.9 Single Molecule Kinetics

9.9.1 Förester Resonance Energy Transfer (FRET)

9.10 The Chapman Cycle

http://www.columbia.edu/itc/chemistry/chem-c2407/hw/ozone_kinetics.pdf

http://irina.eas.gatech.edu/ATOC3500_Fall1998/Lecture35.pdf
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CHAPTER

10

TRANSITIONING FROM CLASSICAL TO

QUANTUM PHYSICS

It was very easy in those days for any second-rate physicists to do first-rate work. There has not been

such a glorious time since then. It is very difficult now for a first-rate physicist to do second-rate

work.

—Paul Dirac, introducing werner heisenberg

By the end of the nineteenth century, many scientists believed that all of the fundamental discoveries of

science had been made and little remained except for improving experimental methods and measuring physical

constants to a greater number of decimal places. This attitude was justified by the accomplishments within both

chemistry and physics, such as Mendeleev’s development of the periodic table and Gibbs’ complete development

of the field of thermodynamics.

It wasn’t until scientists began to investigate the properties of matter at the atomic level that they

realized classical mechanical models failed to predict the behavior of atoms and the outcomes of some experi-

ments. Ernest Rutherford’s nuclear model of the atom posited an atomic structure consisting of a small, dense,

positively charged core with negatively charged electrons orbiting the nucleus. This model agreed with his

experimental results, unlike the previously established “plum-pudding model” which proposed that electrons

were embedded in a sphere of positive charge. Using classical mechanics to try and explain this structure was

fruitless. Which forces held the nucleus together? What stopped the orbiting electrons from spiraling into the

nucleus? These questions explored a small fraction of the discrepancies between the nuclear model of the atom

and classical mechanics yet were enough to prompt a generation of scientists to remedy this disaccord.

10.1 The Photoelectric Effect

The emission of electrons from a substance due to light striking its surface is referred to as the photoelectric

effect. The discovery of the photoelectric effect did not pose a difficulty for classical mechanics. Thermal

emission, the process by which a metal heated to a sufficiently high temperature emits electrons, had been
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known of for a while and paralleled this effect nicely. What classical mechanics could not predict, however, was

the dependency the emission of electrons had on the frequency of light shined on the material.

In the year 1900, Max Planck determined that he could calculate the emission spectrum of electrons by

this effect perfectly by assuming that oscillating atoms were not free to have any energy and instead have

specific energies, corresponding to integer multiplies of one another. More technically, Planck postulated that

the energy emitted by these excited electrons was quantized, unlike the model from classical mechanics which

predicts that the emission spectrum would be continuous.

Planck was the first to hypothesize that each quantized packet of light (or just a quantum of light) had

an energy directly proportional to the frequency, given by

E = hν (10.1.1)

where h = 6.62607×10−34 J s is Planck’s constant, ν is the frequency of the incident light, and E is the energy

of the wave packet. A spatially localized quantum of light is often referred to as a photon. Using this idea,

Albert Einstein postulated more generally about light quanta and their interaction with matter:

1. Light of frequency ν constitutes discrete quanta, each of energy E = hν. Each photon is traveling at the

speed of light c.

2. Light quanta are emitted or absorbed on an all-or-nothing basis. A substance can emit any integer number

of quanta but never any fractional or irrational number. Similarly, an electron in a material can never

absorb a non-integer number of quanta.

3. A light quantum, when absorbed by a metal, delivers its entire energy to one electron.

Invoking energy conservation, these postulates allow us to calculate the total kinetic energy of an emitted

electron from the following relationship:

hν = φ0 + E (10.1.2)

Here, hν is the energy of the photon incident to the electron, φ0 is the work function, or the ionization energy

of the electron, and E represents the total energy left in the emitted electron (for all intents and purposes this

can be thought of as the total kinetic energy). A plot of this equation is illustrated in Figure 10.1.
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Figure 10.1: The maximum kinetic energy attainable by an electron with a work function φ0 after being excited
by a photon of light with energy hν. The frequency ν0 represents the minimum frequency of light required for
an electron to be emitted. The slope of the line is Planck’s constant h.
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The ideas put forth by Einstein within these postulates—that light comes in chunks, the chunks cannot be

divided, and the energy of one chunk is delivered to one electron—were directly at odds with the ideas of classical

physics where energy can be continuously divided and shared. Hence, they are crucial to an understanding of

quantum mechanics.

The idea of a quantized packet of light leads us to believe that light behaves as a particle, traveling in

straight lines as rays of light. As we’ll see, depending on the experiment we perform we may attain results

which agree with this assumption and we may attain results which go against it.

10.2 Specific Heat Models

Soon after working on the photoelectric effect, Einstein (among others) used the concept of energy quantization

to model molar heat capacities more successfully than had been done using classical physics.

The standard classical result for the heat capacity of one mole of atoms vibrating about their equilibrium

lattice positions of a solid is the Law of Dulong-Petite1, which asserts that CV = 3R, where R is the molar gas

constant. Importantly, this result occurs at higher temperatures and is typically a better representation for

heavier elements, such as iron, nickel, or silver. Since this law doesn’t do very well for lighter elements, there

are procedures such as Kopp’s Rule which afford the specific heats for those lighter elements at high enough

temperatures.

As mentioned, the Law of Dulong-Petite occurs at high temperatures yet from experiment we know that

CV decreases to zero as the temperature is lowered. Upon assuming that the oscillations of atoms about

their equilibrium positions were quantized according to Planck’s relation E = hν, Einstein was able to achieve

excellent agreement with experimental data for the heat capacity of solids, far better than what was predicted

by classical physics. In particular, he made the simplifying assumption that all atoms vibrated inside the solid

independently of one another and at the same frequency. The plot of his equation is shown in Figure 10.2.

It’s important to notice Einstein assumed mechanical vibrations of the atoms were subject to quantization

so that under this model, solids were viewed as a lattice of quantum harmonic oscillators all of the same

frequency. This type of quantization is an excellent description of optical phonons2.

Although Einstein achieved far better agreement with experimental heat capacity data than could classical

physics, his model faltered as the temperature of the solid decreased to zero. This was due in part to the fact

that his assumptions resulted in the oscillations of all atoms in a solid being independent of one another,

whereas the correct behavior is found by quantizing the normal modes of the solid, i.e., the mode of a system

in which all parts of a system move sinusoidally with the same frequency and phase. This kind of quantization

is accounted for in the Debye model.

No matter the model for the heat capacity or representation of atoms within a lattice, both Debye and

Einstein extended the applicability of quantum mechanics from radiation, where it was conceived, to molecular

kinetic theory, to which radiation was not directly related. The significance of these achievements is so great,

in fact, that in 1911 Walther Nernst (the man for which the Nernst Equation inherits its name) declared

At present, quantum theory is essentially only a rule for calculation, of apparently a very strange,

one might even say grotesque, nature; but it has proven so fruitful by the work of Planck, as far as

radiation is concerned, and by the work of Einstein, as far as molecular mechanics is concerned...

that it is the duty of science to take it seriously and to subject it to careful investigations.

If this wasn’t enough, Karl Taylor Compton (former physicist and president of MIT) remarked that

Einstein’s development of quantum theory was “a contribution to physical theory certainly comparable in

1During the first half of the nineteenth century this law was used to get rough values of the atomic weights of some elements.
2Phonons are a unit of vibrational energy that arise from oscillating atoms within a crystal. Just as photons are electromagnetic

waves, phonons can be thought of as mechanical waves. They are analogous to photons in that they describe packets of energy
that come from waves traveling through a solid. In this way, we can think of phonons as particles of sound just as photons are
particles of light.



10.2. SPECIFIC HEAT MODELS 145

importance, and thus far more useful in its applications than his more impressive and wider publicized general

theory of relativity.”

10.2.1 Einstein Model for Specific Heat

As mentioned, the Einstein model for specific heat models a crystal lattice as atoms vibrating at the same

frequency, subject to energy quantization. Then, all of these quantum harmonic oscillators have an energy of

the form E = n(hν) for some integer n. The average energy of an oscillator is then determined as

〈E〉 =
3Nhν

ehν/kBT − 1

where N is Avogadro’s constant and a factor of 3 is added to account for all possible directions of translational

motion. Recall that the heat capacity at a constant volume is equivalent to the partial derivative of the internal

energy with respect to time, CV = ∂E/∂T so that we have

CV =
∂ 〈E〉
∂T

=
∂

∂T

[
3Nhν

ehν/kBT − 1

]

=
3Nhν(hν/kBT

2)ehν/kBT

(ehν/kBT − 1)2

=
3R(hν/kBT )2ehν/kBT

(ehν/kBT − 1)2
(10.2.1)

where in the last line we’ve taken advantage of the fact that kBN = R for the ideal gas constant R. Equation

(??) is the Einstein equation for the heat capacity. Notice that in the limit that the temperature becomes

infinitely large, this expression converges to 3R, in accordance with the Law of Dulong-Petite.

If a crystal could be described by atoms vibrating uniformly at a single frequency, this model would work

great! This, however, is not the case. The assumption breaks down at extremely low temperatures where the

vibrations of atoms within a crystal are distributed across some spectrum of frequencies. Modifications to the

theory to relax such assumptions and include ultracold behavior can be found by the Debye model.

10.2.2 Debye Model for Specific Heat

Developed by Peter Debye, the Debye model for the specific heat of elemental solids treats the vibrations of

atoms as phonons in a box, unlike the Einstein model which treats atoms as non-interacting quantum harmonic

oscillators. In other words, instead of treating the atoms as independent harmonic oscillators, Debye treated

the phonon moving through the solid as a harmonic oscillator.

The equation for the heat capacity at a constant volume found by Debye can be expressed as

CV = 9R

(
T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2
dx (10.2.2)

where θD is referred to as the characteristic temperature with corresponding units. At high enough temperatures,
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the ratio θD/T ≈ 0 so that (after some fancy integral approximations) the model simplifies as

CV = 9R

(
T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2
dx

≈ 9R

(
T

θD

)3 ∫ θD/T

0

x2dx

= 9R

(
T

θD

)3
1

3

(
θD

T

)3

= 3R

affording the classical result. At low temperatures, the ratio θD/T →∞ so that our integral simplifies as

CV = 9R

(
T

θD

)3 ∫ ∞

0

x4ex

(ex − 1)2
dx = 9R

(
T

θD

)3(
4π4

15

)
=

12π4R

5θ3
D

T 3

so that near T ≈ 0, the Debye formula for the heat capacity goes as CV ∼ T 3. This result correctly predicts

the temperature dependence of CV, affording the name the Debye T 3 Law.

A plot of the Debye model and Einstein models are shown in Figure 10.2. In both the limits as the

temperature goes to zero and shoots off to infinity the graphs agrees with the classical result. While predicting

heat capacities at low temperatures is great and all, the simplifying assumptions made by Debye cause the

model to falter at intermediate temperatures, unlike the Einstein model.
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Figure 10.2: The specific heat of atomic solids as predicted by Debye and Einstein. Both models agree with the
classical result for the heat capacity as temperature increases to infinity. The Debye model accurately predicts
CV at low temperatures while the Einstein model does better at intermediate temperatures.

10.3 Blackbody Radiation

A blackbody serves as an idealized radiating material which can absorb and emit all frequencies of light. We’re

all familiar with radiating bodies, such as a stove top that turns red after being heated before turning white

and then blue as more heat is added to the material. In terms of frequencies, the radiation emitted by the stove

goes from a lower frequency (red light) to a higher frequency (blue light) as the temperature increases.

Using classical mechanics we can derive an expression for the frequencies of light radiated from a blackbody
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and their relative magnitudes:

ρ(ν, T )dν =
8πkBT

c3
ν2dν (10.3.1)

In Equation (10.3.1), ρ is the spectral density and is a function of wavelength ν and temperature T , measured

in Kelvin, and c is the speed of light. This law is also referred to as the Rayleigh-Jeans law. The factor dν is

used on both sides of the equation because we are interested in the energy density between ν and ν + dν. By

inspection, we can see that we’d expect the spectral density to diverge as ν → ∞. In other words, classical

theory predicts that as ν → ∞ the blackbody should emit an infinite amount of energy. Then, in theory,

all blackbodies should emit an infinite amount of energy at temperatures above absolute zero. The failure of

classical mechanics to accurately model the behavior blackbodies was deemed the ultraviolet catastrophe.

Another way of writing Equation (10.3.1) is

ρ(ν, T )dν =

(
2× 4πν2

c3
× kBT

)
dν

where, the term kBT represents the average kinetic energy contributed by the wave oscillations3, the factor of

2 out front accounts for the transverse nature of the wave and the fact that it has two possible polarizations,

and the term 4πν2/c3 is the number of waves of frequency ν per unit frequency per unit volume that satisfy

the boundary conditions.

Planck was the first scientist to offer an explanation for blackbody radiation which was consistent with

experimental results. Using his idea of energy quantization alongside some statistical thermodynamic ideas4,

he derived the equation,

ρ(ν, T )dν =
8πh

c3
ν3dν

ehν/kBT − 1
(10.3.2)

known as the Planck distribution law for blackbody radiation. For small enough frequencies, Equations (10.3.1)

and (10.3.2) become identical, however, for larger frequencies Planck’s distribution does not diverge. Moreover,

Planck’s distribution agrees with the Stefan-Boltzmann power law, as well as the Wien displacement law, two

relationships which had been confirmed empirically long before the ultraviolet catastrophe was remedied. A

plot of this distribution can be seen in Figure 10.3a for different temperatures.

Planck’s distribution can also be written in terms of wavelengths, using the relationship ν = c/λ. From

this, we find that dν/dλ = −c/λ2 so that Equation (10.3.2) can be rewritten as

ρ(λ, T )dλ =
8πhc

λ5

dλ

ehc/(λkBT ) − 1
(10.3.3)

For large and small enough wavelengths the same equalities hold as the corresponding equation as a function of

frequency since Equations (10.3.2) and (10.3.3) are mathematically equivalent. A plot of the spectral density

as a function of wavelength is illustrated in Figure 10.3b for some different temperatures.

The theory of blackbody radiation and the Planck distribution for blackbody radiation is used commonly

in astronomy to estimate the surface temperature of stars. In fact, Equation (10.3.2) has been used to model

the surface temperature of our sun as well as stars which are much farther away and much hotter.

The derivation for Planck’s distribution rests heavily on statistical mechanics while also drawing insights

from quantum mechanics. For this reason, the derivation is covered later, in Section 13.2.2, instead of here.

3This is a result of equipartition from statistical mechanics.
4namely, the theorem of equipartition based on statistical mechanics
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(a) Plot of spectral density as a function of frequency. As
frequency increases, the energy emitted by the blackbody
increases.
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wavelength increases, the energy emitted by the blackbody
decreases.

Figure 10.3: Plots of the Planck distribution for blackbody radiation as a function of frequency and wavelength
at different temperatures. As we can see from both plots, increasing the temperature increases the amount of
energy emitted by the blackbody.

10.3.1 The Stefan-Boltzmann Power Law

The Stefan-Boltzmann power law describes the power radiated from a blackbody in terms of its temperature

and can be expressed as

W = σT 4 (10.3.4)

where W is the total energy radiated per unit surface area, T is the temperature of the material, and σ is the

Stefan-Boltzmann constant, defined as

σ =
2π5k4

B

15c2h3
≈ 5.67074× 10−8 Wm−2K−4 (10.3.5)

It can be shown from thermodynamic arguments that the total energy radiated per volume, i.e., the energy

density, is related to W by

EV =
4

c
W (10.3.6)

where EV = Etotal/V for a total energy and volume of a blackbody Etotal and V .

To derive the Stefan-Boltzmann power law from Planck’s distribution we first need to convert Equation

(10.3.2) from representing a spectral density to representing a spectral intensity. Luckily, this can be done with

ease after scaling the density by some constants.

I(ν, T ) =
c

4π
ρ(ν, T ) =

2hν3

c2
1

ehν/kBT − 1
(10.3.7)

The conversion is weird but can be understood with a small amount of background. The intensity I(ν, T ) is

defined as the power emitted per area, per steradian, per frequency. Additionally, the spectral density ρ(ν, T )

is defined as the energy per volume per frequency. Symbolically,

energy

area · time · steradian · frequency
=

energy

volume · frequency
(10.3.8)

Getting rid of steradians in the denominator can be done by scaling the spectral density by a factor of 1/4π, the
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number of steradians in the unit sphere. Also, going from 1/(area · time) to 1/volume can be done by scaling

by a factor with units distance/time, i.e., the speed of light c. This is where the factor of c/4π comes from in

Equation (10.3.7). Also, a more detailed discussion of steradians and solid angles can be found in Appendix

??.

Now, to attain the total energy radiated per unit surface area we’ll consider the integral

W =

∫∫∫
I(ν, T ) cosϕdνdΩ (10.3.9)

where I(ν, T ) is defined as above and dΩ = sinϕdϕdθ is the solid angle corresponding to a differential area

on the surface of the sphere. The solid angle can be thought of as the area of the sphere covered by a cone

emanating from the center of the sphere. The factor of cosϕ is included because the intensity is proportional

to the cosine of the angle between the incident photon and the normal vector to the surface of the sphere5.

With that, we can integrate the expression above over all frequencies and

W =

∫ ∞

0

I(ν, T )dν

∫ 2π

0

∫ π/2

0

cosϕ sinϕdϕdθ

=

(∫ ∞

0

2h

c2
ν3dν

ehν/kBT − 1

)(
2π

∫ π/2

0

cosϕ sinϕdϕ

)

=

(
2h

c2

∫ ∞

0

ν3

ehν/kBT − 1
dν

)(
2π

[
1

2
sin2 ϕ

]π/2

0

)

=
2πh

c2

∫ ∞

0

ν3

ehν/kBT − 1
dν

To evaluate this integral we’ll make the substitution u = hν/kBT and therefore dν = (kBT/h)du. Then,

W =
2πh

c2

∫ ∞

0

(
kBTu
h

)3

eu − 1

(
kBT

h

)
du

=
2πh

c2

(
kBT

h

)4 ∫ ∞

0

u3

eu − 1
du

This resultant integral goes by a few different names, all of which are not simple to solve and make me question

my decision to study chemistry. In any case, it evaluates to

W =
2πh

c2

(
kBT

h

)4(
π4

15

)
=

2π5k4
BT

4

15c2h3
= σT 4

which agrees with the Stefan-Boltzmann law introduced in the beginning.

10.3.2 The Wien Displacement Law

The Wien displacement law asserts that the blackbody radiation curve at some temperature will peak at

different wavelengths which are proportional to the temperature.

λmax =
b

T
(10.3.10)

b is Wien’s displacement constant and is approximately b ≈ 2.89777 × 10−3 m K. The inverse dependence of

the wavelength with temperature is something that everyone has observed. As objects heat up they begin

by turning red and orange before turning to blue. This is equivalent to the wavelength decreasing as the

temperature increases.

Deriving Wien’s law is simpler than one might imagine. We can use Planck’s distribution for blackbody

5This is known as Lambert’s cosine law. A surface which obeys this principle is referred to as Lambertian.
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radiation as a function of the wavelength and differentiate with respect to the wavelength to determine where

the spectral density peaks. Beginning by differentiating Equation (10.3.3) and setting the derivative equal to

zero,

dρ(λ, T )

dλ
=

d

dλ

[
8πhc

λ5

1

ehc/(λkBT ) − 1

]

0 = 8πhc

(
−5

λ6(ehc/(λkBT ) − 1)
−

−hc
λ2kBT

ehc/(λkBT )

λ5(ehc/(λkBT ) − 1)2

)

=
hc

λ7kBT

ehc/(λkBT )

(ehc/(λkBT ) − 1)2
− 1

λ6

5

(ehc/(λkBT ) − 1)

=
hc

λkBT

ehc/(λkBT )

ehc/(λkBT ) − 1
− 5

Here we’re allowed the substitution u = hc/(λkBT ) to make solving this equation less cumbersome:

0 =
ueu

u− 1
− 5

ueu = 5(u− 1)

0 = (u− 5)eu + 5

The best way I can think to solve this equation is simply to graph it. The plot is illustrated in Figure 10.4. As

shown in the plot, the solution to this equation is u = 0 (the trivial solution) and u = 4.96511. Hence, we have

that

u = 4.96511 =
hc

λmaxkBT
⇒ λmax =

hc

4.96511T
=

b

T

with b = 2.89777× 10−3 which agrees with the known value.
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Figure 10.4: Plot of y = (x− 5)ex + 5.

10.4 The Double Slit Experiment

It’s been said that there is no single experiment that exhibits the surprising nature of quantum mechanics as well

as the diffraction of particles by a double slit. The experimental setup is relatively simple. A phosphorescent
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screen which flashes when struck by light is parallel to a metal screen with two small slits cut out of it to allow

light to pass through. The size of the slits is far less than the distance between the phosphorescent and metal

screens and over the course of the experiment we are always shining just one photon on the screen at a time.

If we simplified our lives for a moment and considered the case of a metal screen with only one slit, the

distribution of light on the phosphorescent screen illustrates maxima and minima similar to the maxima and

minima created by wave interference, as illustrated in the upper half of Figure 10.5.

Now, we introduce two slits to the metal screen so that the light detected from the phosphorescent screen

will be a combination of the two slits. The results of this experiment are shown in the lower half of Figure 10.5.

Immediately, there are some obvious differences and similarities between the experiments. In the case of both

the double and single slit, the spatial distribution of the light flashes indicate that the photons are behaving

as waves yet individual flashes are observed on the phosphorescent screen as expected from a particle. Recall

that initially we said we only allow a single packet of light to pass through the slits at a time. So, it seems as

though the photons are behaving as both waves and particles simultaneously in the case of the double slit!

Figure 10.5: Results of the diffraction experiment with one and two slits.

Through the lens of classical mechanics we could arrive at one of two results. Either, individual electrons

are moving through the slits to generate the points on the light screen to generate the distribution of light, or,

the spatial distribution of light is governed by a diffraction pattern. The former behavior is particle-like and

the latter wave-like. Whereas in classical mechanics we would need to choose one or the other, in quantum

mechanics we can choose to say the behavior of electrons is particle-like and wave-like. Using a more technical

quantum mechanical description we’d say that the distribution of electrons incident to the phosphorescent

screen is a superposition of waves going through the top and bottom slits, which is equivalent to saying the

electron is going through both slits simultaneously.

This experiment, alongside the others discussed in this chapter, constitutes an introduction to wave-

particle duality, the idea that every elementary particle may be described as either a particle or a wave.

Regarding the topic, Albert Einstein wrote

It seems as though we must use sometimes the one theory and sometimes the other, while at times

we may use either. We are faced with a new kind of difficulty. We have two contradictory pictures

of reality; separately neither of them fully explains the phenomena of light, but together they do.

That’s all to say, quantum mechanics is weird and anyone who says they understand it is lying.
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10.5 Bohr Model of the Hydrogen Atom

Following Rutherford’s discovery of the structure of an atom in 1911, containing a dense, positively charged

core with orbiting electrons, the picture of atomic theory became inconsistent with electrodynamic theory

and Maxwell’s equations. According to classical mechanics, an electron orbiting the nucleus is constantly

accelerating and must therefore radiate away energy until spiraling into the nucleus. To explain this phenomenon

required experimental observations followed by quantitative analysis of the results.

Attaining spectral data for different atoms was already possible using a gas discharge tube, a glass tube

with metal electrodes on either end to send electrons through it. The container was partially filled with some

type of gas and a generator was turned on to create a current across the tube. Unsurprisingly, the emission

spectra of different gasses were all different, however, all of them were discrete spectra, meaning they contained

only discrete, individual wavelengths. Although this stood in contrast to the prediction of classical mechanics,

in the context of Einstein’s postulates regarding the quantization of light, these results could be rationalized.

Before Einstein, however, Johannes Rydberg used experimental observation to derive a simple relationship

to explain all of the frequencies that appeared on the hydrogen emission spectrum,

ν̃ =
1

λ
= RH

(
1

n2
1

− 1

n2
2

)
, n2 > n1 (10.5.1)

where ν̃ = 1/λ is the wavenumber, typically measured as inverse centimeters, and RH = 109677.581 cm−1 is

the Rydberg constant. This relationship was only derived after Bohr introduced his model of the atom6

Now, using Einstein’s postulates, Niels Bohr put forth a new model of the atom which incorporated

quantization to Rutherford’s model:

1. The electrons in an atom can exist only in certain allowed orbits.

2. Atomic energies are quantized such that each arrangement of electrons in an atom has a discrete, well-

defined energy.

3. An electron can undergo a transition from one energy level to another by emitting or absorbing a photon

whose energy is exactly equal to the energy difference between the two energy levels.

4. Electrons can also transition between energy levels by absorbing energy from a collision with another

electron or atom.

There are numerous important implications from Bohr’s model of the atom:

1. Matter is stable. An atom in its ground state has no states of lower energy to jump to and can therefore

remain in the ground state forever.

2. Atoms emit and absorb a discrete spectrum. Only those photons whose frequencies math the energy

difference between electron energy levels can be emitted or absorbed. Photons of other frequencies cannot

be emitted or absorbed without violating energy conservation.

3. Emission spectra can be produced by collisions. In a gas discharge tube, the current-carrying electrons

moving through the tube occasionally collide with the atoms allowing for a transfer of energy. Once the

atom is in an excited state, it can emit photons of light as it transitions back down to the ground state.

4. Each element in the periodic table has a unique spectrum. The energies of the ground state, first excited

state, second excited state, etc., are different for different elements which have a different number of

electrons. States with different energies emit and absorb photons of different wavelengths.

6This relationship was shared after Balmer had observed regularities within the line spectra of hydrogen, a topic covered in the
proceeding section.
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To arrive at this model of the atom in the first place Bohr had to make assumptions using wave-particle

duality. Considering a hydrogen atom, the Rutherford model states that an electron revolves around the

nucleus in a circular orbit. Bohr assumed that the Coulombic attraction to the nucleus was directly equal to

the centripetal force that opposed the attraction, in accordance with classical mechanics,

q2
e

4πε0r2
=
mev

2

r
(10.5.2)

where qe is the charge of an electron, r is the radius of the orbit, me is the mass of the electron, and v is the

its linear velocity. Equation (10.5.2) places a constraint on the motion of the electron. The velocity v and

radius r must satisfy this relationship in order for the particle to move in a circular orbit. In fact, a similar

derivation could be used for any object orbiting a large mass, such as a satellite orbiting the earth. Next, Bohr

introduced wave-particle duality by assuming the electron had the de Broglie wavelength λ = h/p. Additionally,

using energy quantization, Bohr further assumed that the length of an orbit had to be an integer multiple of

wavelengths such that

2πr = nλ =
nh

p
, n = 1, 2, 3 . . . (10.5.3)

which affords the condition

2πr =
nh

mev

mevr = n}, n = 1, 2, 3 . . . (10.5.4)

where } = h/2π is the reduced Planck’s constant.

Here, I’ll make a brief aside. For any particle in motion, whether it’s an electron, a tennis ball, or a

planet, the angular momentum L is given by

L = mvr

where m is the mass of the object, v is its velocity, and r is its radius. Recall that the angular momentum of

orbital motion is always conserved because the centripetal force keeping it in orbit is directed exactly at the

center of the object and therefore does not exert a torque. So, what role does angular momentum play in our

analysis of the hydrogen atom? Well, if we consider Equation (10.5.4), it’s clear to see that

L = n}, n = 1, 2, 3 . . .

and therefore the angular momentum of an orbiting electron is quantized. In particular, it must be an integer

multiple of the reduced Planck constant. The quantization of angular momentum is a direct consequence of

the wave-like behavior of electrons and we’ll come to see that it will lead to the idea of electron shells. Okay,

back to Bohr’s model of the hydrogen atom.

The rationale for the assumption of integer-multiple wavelengths is intuitive yet far from obvious. As

shown in Figure 10.6, Bohr reasoned that unless the orbit length is an integer number of wavelengths, the

wave will destructively interfere with itself and the amplitude will decrease to zero in a few orbits. Another

way of looking at why the orbit length must consist of an integer number of wavelengths is to reason that

the electron must establish a standing wave along the orbit. Altogether, the assertion that there is a stable

orbit for the electron in the Rutherford model goes entirely beyond classical physics. Equations (10.5.2) and

(10.5.4) simultaneously place two different constraints on the velocity and radius of the orbiting electron due

to wave-particle duality.

We can use Equation (10.5.4) to find an expression for the velocity of the electron and substitute into
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Figure 10.6: A wave traveling in a circular orbit with an integer number of wavelengths. Otherwise, the wave
would cancel itself out and be destroyed.

Equation (10.5.2) to find an equation for the radius of the electron orbit as follows:

q2
e

4πε0r2
=
me(n}/mer)

2

r

rn =
4πε0}2

meq2
e

n2, n = 1, 2, 3 . . . (10.5.5)

The subscript n indicates that the radius of the orbit is dependent on the integer n. Notice that the right-hand

side of this equation, aside from n2, is a collection of constants. So, we can define the Bohr radius, aB, as

aB =
4πε0}2

meq2
e

≈ 5.292× 10−11 m = 0.5292�A (10.5.6)

which affords an expression for the radius of an orbiting electron in a hydrogen atom as

rn = n2aB, n = 1, 2, 3 . . . (10.5.7)

From Equation (10.5.5) we can see clearly how an electron can have only discrete values for orbital radii, each

corresponding to a discrete value of n. In fact, we can show that the discrete set of orbit radii give rise to a

discrete set of energy levels as well.

Note that the total energy of an electron is the sum of its kinetic and potential energy,

E = T + V =
1

2
mev

2 − q2
e

4πε0r

where the potential energy is given by the electric potential of the electron and each variable represents the

same quantity as previously established. Using Equation (10.5.2) we can eliminate velocity from this equation

as follows:

E =
1

2

(
q2
e

4πε0r

)
− q2

e

4πε0r
= − q2

e

8πε0r



10.5. BOHR MODEL OF THE HYDROGEN ATOM 155

Finally, we can eliminate the radial orbit r using Equation (10.5.5) to illustrate the discrete set of energy levels.

E = − q2
e

8πε0

(
meq

2
e

4πε0n2}2

)
= − meq

4
e

8ε2
0h

2n2
, n = 1, 2, 3 . . . (10.5.8)

All energy levels in the set given by Equation (10.5.8) are negative because the zero energy arbitrarily

corresponds to a proton and electron at infinite separation. The ground state energy corresponds to n = 1 and

is the lowest energy that a hydrogen atom can have (recall that Bohr made these calculations with a hydrogen

atom in mind). The key step in the derivation of the allowed energy levels within an atom was recognizing that

electrons behave as waves and particles. This requirement leads to quantized orbits, affording the characteristic

integer n for each orbit, also known as the quantum number.

Before continuing, notice that the energy of an electron decreases as E ∼ −1/n2. So, as n → ∞, the

energy of interaction between an electron and the nucleus decreases to zero. Also, recall from Equation (10.5.5)

that the radius of an electrons orbit increases as rn ∼ n2. So, in the Bohr model, the radii of electron orbits are

concentric circles. Lastly, using Equations (10.5.4) and (10.5.5) we can show that the velocity of an electron

decreases as v ∼ −1/n. So, as the quantum number n increases, the velocity decreases. Intuitively this should

make sense. We’ve already seen that the energy E of the electron decreases as n increases. A large part of

that energy is in the form of kinetic energy, which is dependent on velocity (the Coulombic attraction between

the nucleus and electrons contribute to E in the form of potential energy but that won’t have an effect on

our line of reasoning). Hence, if increasing n decreases velocity then we’d expect it to decrease energy as well.

Everything checks out!

Because the energy of an electron can only have discrete values, the light emitted when an electron relaxes

from a higher to a lower energy level (or, from energy level n2 to n1) is a discretized set of frequencies:

νn2→n1 =
meq

4
e

8ε2
0h

3

(
1

n2
1

− 1

n2
2

)
, n2 > n1 (10.5.9)

Equation (10.5.10) is in direct agreement with Equation (10.5.1) and so our derived relationship agrees with

the empirical formula. Note that ν is the frequency and is related to the wavenumber ν̃ by ν = cν̃ where c is

the speed of light so that the Rydberg constant can be expressed as

RH =
meq

4
e

8ε2
0h

3c

Although the Bohr model predicts the absorption and emission frequencies observed in the hydrogen atom,

it does not give quantitative agreement with spectra observed for atoms containing more than one electron.

Though, this result should make sense. For one thing, other elements in the periodic table have more positive

charges in their nuclei and correspondingly more electrons. Moreover, the interaction between many electrons

introduces complexity to our analysis of these systems.

Also, the Bohr model is fundamentally incorrect because it assumes that both the position and momentum

of an electron within an atom can be known. However, by the uncertainty principle (to be discussed more later)

this is impossible.

10.5.1 The Line Series of Hydrogen

In 1885, Johann Jakob Balmer, a school teacher at the time, noticed that the wavelengths of the four known

spectral lines for hydrogen were proportional to 32/(32−22), 42/(42−22), 52/(52−22), and 62/(62−22). From

this data he predicted the existence of a fifth line. Informed by the discovery of this fifth line, Balmer proceeded

to show that his formula applied to all twelve known spectral lines of hydrogen, and he predicted that no line

in the series would ever exist beyond 6562× 10−7 mm and that the series would converge at 3645.6× 10−7 mm.

These discoveries kicked off an intensive search for regularities in spectra.

Because the emission spectra of atoms consist of only certain discrete frequencies, they are often referred
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to as line spectra. For hydrogen, the first elucidated series of line spectra was a massive step toward determining

the electronic structure of atoms. The most common series of line spectra are the Balmer series and Lyman

series, while others such as the Paschen series, Brackett series, and Pfund series all supported the Bohr model

of the hydrogen atom through empirical results.

With a new formula for determining the frequency of emitted electrons in Equation (10.5.10) through the

use of energy quantization, line series could be determined by fixing the energy state to which the electrons

relaxed while measuring the frequency of light given off as electrons were excited to different high energy states.

Typically, spectroscopists use wave numbers to measure frequencies of emitted electrons, given by ν̃ = 1/λ, as

noted above in the discussion about the Rydberg constant. To measure the wave number of light given off,

we’ll use Equation (10.5.1):

ν̃n2→n1
= RH

(
1

n2
1

− 1

n2
2

)
, n2 > n1 (10.5.10)

The Balmer series is defined as the set of frequencies that arise from electron excitations from the n = 2 energy

level to the n = 3, 4, 5 . . . so that it can be written as

ν̃n2→2 = RH

(
1

4
− 1

n2
2

)
, n2 = 3, 4, 5 . . . (10.5.11)

Note that the observed frequencies in this set fall within the visible light spectrum. Similarly, the Lyman series

is defined as the set of frequencies that arise from electron excitations from the n = 1 energy level to all those

above,

ν̃n2→1 = RH

(
1− 1

n2
2

)
, n2 = 2, 3, 4 . . . (10.5.12)

In contrast to the Balmer series, the frequencies in the Lyman series fall within the ultraviolet spectrum.

10.6 Matter Waves

Building off of Einstein’s theories regarding wave-particle duality, Prince Louis-Victor de Broglie thought that if

light waves could exhibit particle-like behavior then why can’t all material particles exhibit wave-like behavior?

That is, what about the existence of matter waves? With no experimental evidence to support his claim, de

Broglie postulated that if (emphasis on the if) a material particle of momentum p = mv has wave-like nature,

then its wavelength must be given by

λ =
h

p
(10.6.1)

which is known as the de Broglie wavelength. According to this equation, any particle having a momentum p

has an associated wavelength λ = h/p. Note that the momentum of a photon is entirely relativistic whereas

for a “normal” particle there is a nonzero rest mass as well as a relativistic mass which both contribute to

the momentum. Unless particles are traveling near the speed of light, the relativistic mass is very small and

therefore contributes negligibly to the momentum.

As a brief historical aside, de Broglie presented these ideas in a series of papers in 1923 and defended

the premise of matter waves in his thesis in 1924. The examining committee did not believe in the physical

reality of these matter waves and probed de Broglie for how such a hypothesis could be experimentally verified.

One of the members of the committee, Paul Langevin, sent a copy of the thesis to Einstein to which Einstein

commented that de Broglie “had lifted a corner of the great veil.” This guaranteed the acceptance of de

Broglie’s thesis and his idea of matter waves.

Interestingly (and potentially obviously for the skeptic), de Broglie didn’t just grab this relation out of
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thin air. In fact, he developed this theory around the time Einstein was developing the general theory of

relativity, which indicated that a photon has a relativistic mass. A relativistic mass, in contrast to an invariant

mass or rest mass, is dependent on the velocity with which the particle travels relative to an observer. The

relativistic mass of a photon is related to its energy by

E = mc2 (10.6.2)

Now we can invoke two, already established results. The first is the result from classical physics that a wave’s

velocity is the product of its frequency and wavelength, namely, c = λν for a photon. Additionally, recall

Planck’s relation E = hν for the quantization of energy. Then, using Equation (10.6.2), we have that

E = mc2 = hν

c

ν
=

h

mc
λν

ν
=
h

p

λ =
h

p

which is exactly the de Broglie relation. In the second step, note we used the fact that the momentum of a

photon is given by p = mc.

Briefly, we may recall from the preceding section (10.5) the equations which govern the orbital radius, rn,

and momentum, Ln, of an electron within hydrogen under the Bohr model:

rn = n2aB & Ln = n} ⇔ pn =
n}
rn

=
}
naB

Notice, then, that the de Broglie wavelength is given by

λn =
h

pn
= 2πnaB

and upon multiplying each side of this equation we have that nλn = 2πn2aB, or, nλn = 2πrn. Thus, n de

Broglie wavelengths equal the circumference of the electron’s orbit under the Bohr model.

This result was critical in the development of quantum mechanics because it showed that particles exhibit

wave-like behavior. If this were the case, there must be a wave equation that relates the spatial and time

dependencies of the wave amplitude for the (wave-like) particle. We could think of this relationship as the

quantum analog to Newton’s laws of motion.

10.7 The Davisson–Germer Experiment

The Davisson–Germer experiment confirmed de Broglie’s particle of wave-particle duality by illustrating the

diffraction of electrons scattered by the surface of nickel crystal. The impetus for this experiment was in part

due to the success of illustrating the wave-like nature of X-rays through X-ray scattering experiments.

The setup for this experiment involved firing electrons from a heated filament and accelerating them

through a voltage before allowing them to strike the surface of solid nickel. An electron detector was positioned

on a moving platform so that it could observe electrons at myriad different diffraction angles. Surprisingly (or

unsurprisingly, to those who subscribed to the idea of energy quantization at the time), the scattered beam

exhibited a diffraction pattern representative of a wave, confirming the idea of wave-particle duality.
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10.8 Classical versus Quantum Mechanics

It’s important to recognize that classical mechanics and quantum mechanics are not competing theories but

instead different ways of describing the world. In some cases classical mechanics work better and in others

you’d be better suited to use quantum mechanics. As an example, consider a container filled with hydrogen

gas at a standard conditions. The origin of the pressure in the container arises from rapid collisions between

atoms and the walls of the container. As we know from experience, classical mechanics gives a perfectly valid

description of the pressure. In contrast, if we pass ultraviolet light through the gas and ask how much energy

is taken up by an H2 molecule, a quantum mechanical description is necessary.

The dawn of quantum mechanics introduced the idea that particles and waves are not separate entities.

So, determining if a system requires a classical description or a quantum description is equivalent to determining

if the system can be treated as a particle (or a collection of particles) or if it could be described by a wave,

respectively. Two criteria are used to make this distinction: the magnitude of the wavelength of the particle

relative to the dimensions of the problem and the degree to which the allowed energies of the system form a

continuous spectrum.

A good starting point is to consider a diffraction experiment. If a wave of wavelength λ passes through

a slit of width a and λ � a then a classical description is fine and we can use ray tracing (in the context of

this diffraction experiment, that is) for the experiment. Diffraction is observed only when the size of the slit is

comparable to the wavelength of light so that λ ≈ a. Determining the wavelength of any particle can de done

using the de Broglie relation, Equation (10.6.1). The de Broglie relation deals with momentum so the wave

behavior of massive objects does not manifest itself. Additionally, there is no sharp boundary for being able

to describe an object as a particle or a wave; The degree to which each of these properties is exhibited flows

smoothly from one extreme to the other.

The second criterion for determining the type of mechanics necessary for a situation is based on the energy

spectrum of the system. Classical physics deals with a continuous energy spectrum whereas quantum physics

deals with a discrete energy spectrum. In practice, this distinction may be intuitive at times but to make it

more quantitative we can consider the Boltzmann distribution from statistical mechanics.

Before we do that, recall the Maxwell–Boltzmann distribution, which is a little bit different from the Boltz-

mann distribution. If we consider an monoatomic gas of mass m at temperature T , the Maxwell–Boltzmann

distribution states that the probability of finding an atom at velocity v is given by

PT (v) = 4π

(
m

2πkBT

)3/2

v2e
− 1

2

(
mv2

kBT

)
, −∞ < v <∞ (10.8.1)

We can rewrite this expression assuming that the gas is ideal so that the energy ε of a particle is completely

kinetic energy. Moreover, if we take a ratio of any two probabilities, say, the ratio of probabilities for atoms at

velocities vi and vj , the constants out front go away and our lives become a bit simpler:

Pi
Pj

=
v2
i

v2
j

e−(εi−εj)/kBT (10.8.2)

Most generally, if we assume that the probability of attaining any velocity is a priori equally likely then we

can rewrite this distribution as

ni
nj

=
gi
gj
e−∆ε/kBT (10.8.3)

where ∆ε = εi − εi is the difference in energy levels, ni and nj are the number of particles in states i and j,

respectively, and gi and gj are the degeneracies of the respective states. This is one way to write the Boltzmann

distribution. In any of the Equations (10.8.1) through (10.8.3) we see that the probability of an atom having

an energy ε falls off exponentially as ε increases. Another aspect of the distribution which is clear (and is very

clear from a study of statistical mechanics) is the importance of kBT , the average energy that an atom will
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have at temperature T . Thus, we can understand the exponential term of Equation (10.8.3) as telling us that

larger temperatures cause the ratio of ni/nj to go to 1, or that the deviation in energy states decreases.

What about quantum mechanics? Great question. If kBT is small compared to the spacing of allowed

energies ∆ε, that is, kBT � ∆ε, classical and quantum mechanics will give much different results for the energy

spectrum. To make this result more clear, consider a system of ideal atoms with only translational freedom in

three-dimensions. The kinetic energy of each atom will be 3
2kBT by equipartition. Moreover, suppose that this

system has very large gaps between allowed energies such that in order to excite the system from energy level

n = 1 to n = 2, we require an input of kBT × 10100 J. As we add particles, however, we’re only adding 3
2kBT J

per particle and would therefore require an immense amount of particles (or just any form of energy) to allow

the system to reach an excited state. Hence, we require a quantum mechanical description of the system.

Inversely, if kBT is much larger than the difference between the allowed energy states, classical and

quantum mechanics will give the same result for the relative number of particles in each energy state. That

is, they both provide an adequate description of the system. To reinforce this idea, consider a system of 1000

particles which can occupy one of two energy states, ε1 and ε2, with ε2 > ε1. The difference in the energy

levels is denoted ∆ε = ε2 − ε1 and further suppose that the degeneracies of the energy levels are the same. If

we allow n1 and n2 to denote the number of particles in the first and second energy levels, respectively, from

the Boltzmann distribution we have that

n2

n1
= e−∆ε/kBT

with n1 + n2 = 1000. Solving this system7 for n2 and n1 as a function of energy and temperature affords

n2 =
1000e−∆ε/kBT

1 + e−∆ε/kBT
, n1 =

1000

1 + e−∆ε/kBT

Figure 10.7 presents a plot of n1 and n2 as a function of kBT/∆ε. Now, the relationship between the difference

in energy levels and kBT becomes more clear. When kBT/∆ε is small (or, when ∆ε/kBT is large), the vast

majority of particles are in the lower energy state ε1. Stated in another way, when a system requires a quantum

mechanical description because the difference in allowed energies exceeds kBT , the number of particles in the

lower energy state will dominate. Similarly, either a classical or quantum mechanical description will suffice for

a system when the difference in allowed energies is negligible compared to kBT .

10.8.1 The Correspondence Principle

One way to understand the convergence between classical and quantum mechanical descriptions of a system is

to consider the measurement process. Any measurement on an observable quantity for a system has a certain

resolution that averages data over the resolution range. For example, when we use an oscilloscope to measure

the frequency of a wave, the resolution of the oscilloscope is the smallest increment in time it can detect,

whether it be seconds, milliseconds, nanoseconds, etc. Anything beyond the smallest increment is averaged and

added to the final observed frequency. From the perspective of classical mechanics, our resolution of quantum

mechanical states is very poor so that energy fluctuations on the order of kBT are unnoticeable. Then, as the

energy of the system increases, energy fluctuations increase until they become noticeable and the “resolution”

of classical mechanics may predict the system’s behavior. Hence the convergence of quantum mechanics with

classical mechanics as the energy of a system increases, or, as the difference in allowed energy decreases.

When we study the Schrödinger equation we’ll see that the energy of a particle in a one-dimensional box

at some energy level n is given by En = h2n2/8ma2 for n = 1, 2, 3 . . . where m is the mass of the particle, a

is the length of the box, and h is Planck’s constant. We may consider the energy spacing between levels by

looking at the ratio (En+1−En)/En, which can be thought of as the factor by which the energy increases from

7Although a solution for the number of particles presented here relies on the Boltzmann distribution, an equally reliable way of
reaching this conclusion could have been done using statistical mechanics and finding the partition function for the system.
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Figure 10.7: Plot of number of particles in either energy level ε1 or ε2 with ε2 > ε1 as a function of the ratio
kBT/∆ε.

level n to n+ 1.

En+1 − En
En

=
h2(n+ 1)2/8ma2 − h2n2/8ma2

h2n2/8ma2
=

(n+ 1)2 − n2

n2
=

2n+ 1

n2

In the limit that n → ∞, this ratio approaches zero so that the energy spacing between levels approaches

zero. This result and all other ways of saying that classical and quantum mechanics converge for large enough

energies are part of the general result known as the correspondence principle.



CHAPTER

11

THE QUANTUM MECHANICAL

FRAMEWORK

All models are wrong, but some are useful.

—George E.P. Box

The quantum mechanical framework provides the equations and postulates necessary to explore quantum

models and phenomena. We’ll start by introducing the Schrödinger Equation, the quantum mechanical analog

to Newton’s second law of motion, F = ma. This equation will serve as a basic introduction to operators and

motivation to define the quantum mechanical postulates, which can be thought of as necessary conditions for

any allowable quantum mechanical state.

Together, the Schrödinger equation and the quantum mechanical postulates will allow us to explore the

different types of particle motion—translational, vibrational, rotational, and electronic—and their relevant

models.

Importantly, remember that in the context of history, quantum mechanics and energy quantization were

not readily adopted by the scientific community and required many years of incredibly smart people advocating

for the theory. The Schrödinger equation is no different.

11.1 The Schrödinger Equation

A year following de Broglie’s suggestion that matter may have wave-like properties, Erwin Schrödinger discov-

ered the law of quantum mechanics, commonly referred to as the Schrödinger equation. It is the law of quantum

mechanics in the same way that Newton’s laws are the laws of classical mechanics. It gives the evolution over

time of a wave function, the quantum-mechanical characterization of a system. Upon initial development of

the theory, Schrödinger used the term “wave mechanics” to describe his theory.

It’s important to note that the Schrödinger equation isn’t necessarily “derived”. Although we can derive

the classical wave equation (Appendix ??) and although I’ll present a formulation of the Schrödinger equation

from that, we rely on de Broglie’s relation between wavelength and momentum, an equation which in and of

itself seemingly appeared out of thin air. In fact, in his lectures on physics Richard Feynman opined that

161
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We do not intend to have you think we have derived the Schrödinger equation but only wish to

show you one way of thinking about it. When Schrödinger first wrote it down, he gave a kind of

derivation based on some heuristic arguments and some brilliant intuitive guesses. Some of the

arguments he used were even false, but that does not matter; the only important thing is that the

ultimate equation gives a correct description of nature... Where did we get that from? Nowhere.

It’s not possible to derive it from anything you know. It came out of the mind of Schrödinger,

invented in his struggle to find an understanding of the experimental observations of the real world.

Nevertheless, we may use the classical wave equation to arrive at Schrödinger’s result. To begin, suppose

that we have a standing wave Ψ(x, t) = ψ(x) cos(ωt). Recall the classical wave equation,

∂2y

∂x2
=

1

v2

∂2y

∂t2
(11.1.1)

a derivation for which can be found in Appendix ??. Substituting Ψ(x, t) for the wave function y we have that

∂2Ψ(x, t)

∂x2
=

1

v2

∂2Ψ(x, t)

∂t2

∂2

∂x2

[
ψ(x) cos(ωt)

]
=

1

v2

∂2

∂t2

[
ψ(x) cos(ωt)

]

cos(ωt)
∂2ψ(x)

∂x2
=
ω2

v2

(
− ψ(x) cos(ωt)

)

∂2ψ(x)

∂x2
+
ω2

v2
ψ(x) = 0 (11.1.2)

Recall that the angular frequency ω is related to the linear frequency ν by ω = 2πν and that the velocity v

of the wave is related to the frequency by v = λν. After a little bit of algebraic gymnastics we can rewrite

Equation (12.2.2) as

∂2ψ(x)

∂x2
+

4π2

λ2
ψ(x) = 0 (11.1.3)

To satisfy the properties of quantum systems we now introduce the de Broglie relation to the constraints

on this wave. By that I mean we must relate the wavelength to the wave’s momentum. Before we make this

substitution, however, note that we can relate the momentum of a wave to its energy by

1

2
mv2 =

p2

2m
= E − V

p =
√

2m(E − V ) (11.1.4)

where E represents the total energy of the wave, V represents its potential energy, and therefore E−V represents

its kinetic energy by the law of conservation of energy. Using de Broglie’s relation we have that

λ =
h

p
=

h√
2m(E − V )
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and Equation (12.2.3) can be expressed as

∂2ψ(x)

∂x2
+ 4π2

(√
2m(E − V )

h

)2

ψ(x) = 0

∂2ψ(x)

∂x2
+

2m(E − V )

}2
ψ(x) = 0

}2

2m

∂2ψ(x)

∂x2
+ (E − V )ψ(x) = 0

− }2

2m

∂2ψ(x)

∂x2
+ V ψ(x) = Eψ(x)

Oftentimes the potential energy of a system changes with position1 and so we write V (x). This affords us the

one-dimensional time-independent Schrödinger equation, written

− }2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) = Eψ(x) (11.1.5)

This is the fundamental equation used to study stationary states of quantum mechanical systems. Using the

classical wave equation in three dimensions instead of just one we can derive a similar relationship for the

Schrödinger equation, generalized to three-dimensional space,

− }2

2m
∇2ψ(~r) + V (~r)ψ(~r) = Eψ(~r) (11.1.6)

where ~r = (x, y, z). Above I took advantage of the Laplacian operator, ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 to simplify notation.

Refer to Appendix ?? for discussion on waves in more than one dimension and the Laplacian operator.

The generalization of the Schrödinger equation to three dimensions illustrates its similarity to the classical

equation for particle energy, derived from Hamiltonian mechanics:

1

2m
(p2
x + p2

y + p2
z) + V (x, y, z) = E (11.1.7)

where px, py, and pz, are the momenta in the x, y, and z directions, respectively. For this reason, the Schrödinger

equation is oftentimes written as

Ĥψ = Eψ (11.1.8)

where Ĥ is the Hamiltonian operator (or the total energy operator), and ψ is the spatial component of the wave

function as defined previously.

There is an analogous quantum mechanical form of the time-dependent classical wave equation, referred

to as the time-dependent Schrödinger equation, written

− }2

2m

∂2Ψ(x, t)

∂x2
+ V (x, t)Ψ(x, t) = i}

∂Ψ(x, t)

∂t
(11.1.9)

with an analogous three-dimensional form,

− }2

2m
∇2Ψ(~r, t) + V (~r, t)Ψ(~r, t) = i}

∂Ψ(~r, t)

∂t
(11.1.10)

No matter which of the Equations (12.2.5) through (12.2.10) you consider, there is an intuitive interpre-

tation of Schrödinger’s Equation which should be kept in mind. The Hamiltonian operator Ĥ has two parts:

the ∇2 part represents the “wiggliness” of the wave function while V simply represents the potential energy of

1This is fairly intuitive. If we are dealing with charges (which, last I checked, electrons and protons have charges) there are
electric fields inherent in the system and with each electric field is an electric potential which defines the potential energy of the
system.
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the system at various points in space. The Schrödinger equation requires both of these parts to counterbalance

each other at every point in space so that they always combine to give the same value of the total energy E.

11.1.1 Quantum Mechanical Operators and Observables

To measure any observable quantity, such as energy, momentum, or position, in quantum mechanics we require

an operator, unlike in classical mechanics where those may be measurable. One common operator is the

Hamiltonian that we see in the (one-dimensional) Schrödinger equation,

Ĥ = − }2

2m

∂2

∂x2
+ V (x)

Simply put, an operator is a way of writing instructions for whatever follows. I could write B̂f(x) where

B̂ implies

• Take the square root of the function

• Set the function equal to 4

• Do laundry

• Take the square root of the function again

and that would be a valid operator. A more relevant example might be the differentiation and integration

operators that we are familiar with.

In quantum mechanics we’ll deal only with linear operators, those which satisfy the relation

Â[c1f(x) + c2g(x)] = c1Âf(x) + c2Âg(x)

where c1 and c2 are constants and f(x) and g(x) are some functions. Common linear operators are differentiation

and integration, as mentioned previously. In contrast, the “square” operator is not linear. If we let Ŝ be the

operator telling us to square an expression,

Ŝ[f(x) + g(x)] = f2(x) + 2f(x)g(x) + g2(x) 6= f2(x) + g2(x)

and therefore Ŝ[f(x) + g(x)] 6= Ŝf(x) + Ŝg(x).

11.1.2 The Schrödinger Equation as an Eigenvalue Equation

The Schrödinger equation is an example of an eigenvalue equation. An eigenvalue equation is any relationship

of the form

Âfi = λifi (11.1.11)

where Â is an operator, fi is a function, referred to as the eigenfunction, and λi is some scalar constant, referred

to as the eigenvalue. Typically an operator can have an infinite number of eigenfunctions so that the subscript

i is used to denote which eigenfunction corresponds to which eigenvalue. In the case of Equation (12.2.8),

the Hamiltonian operator Ĥ is the quantum mechanical operator that returns the total energy E which is the

eigenvalue of the equation. Also, the wave function ψ is the eigenfunction.

The fact that Schrödinger’s equation is an eigenvalue equation should agree with your intuition. As we’ll

come to see, the wave function of a particle completely defines that particle: everything about the particle’s

position, linear and angular momentums, kinetic and potential energies, etc., can be determined from the wave

function. As we operate on a wave function Ψ, then, we’re only concerned with that particular Ψ. If Ψ were to

change at all then we’re no longer studying the particular particle we concerned ourselves with initially. Hence,
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when we operate on a wave function, we’re only concerned with those operators which return the same wave

function so that we know we’re studying the same particle. This is a rationale behind the Schrödinger equation

being an eigenvalue equation.

11.2 The Quantum Mechanical Postulates

Quantum mechanical postulates formalize the conjectures made by scientists on the behavior of matter at a

quantum level. Establishing these postulates is similar to setting up a series of axioms and then logically

deducing the consequences of those axioms. Just as the basic definitions of knot theory had to be elucidated

before Lisa Piccirillo could solve the Conway knot problem, quantum mechanical postulates must be established

before we can go on to prove more impactful results. Energy quantization, confinement, and uncertainty may

all be explained with a properly chosen set of postulates.

11.2.1 The Physical Interpretation of a Wave Function is Probability

Our first postulate of quantum mechanics can be stated as follows:

The state of a quantum mechanical particle is defined completely by a wave function Ψ(~x, t). The

probability that the particle will be found at time t0 in a spatial interval of width dx centered at ~x0

is given by

Ψ(~x0, t0)∗Ψ(~x0, t0)dx (11.2.1)

The first point, that a quantum mechanical particle is completely defined by the wave function, cannot be

understated. Recall from classical mechanics that our goal in any situation is ultimately to model the trajectory

of a system as a function of the time. That is, we’re looking for some function x(t) which tells us the position

of a particle at any time t (with only one spatial coordinate considered to simplify notation). From this, we

can deduce any quantity we want:

• The velocity of the particle is given by v = dx
dt and the acceleration is given by a = d2x

dt2 . Moreover, the

momentum can be found as p = mdx
dt .

• The force acting on the particle is given by F = mdx2

dt2 .

• The kinetic energy can be found as T = 1
2m
(
dx
dt

)2

• The gravitational, coulombic (assuming charges are present and known), and spring potential energies

can be found as

Ugravity = mgx, Ucoulombic =
kQ1Q2

x
, Uspring =

1

2
kx2

The list may go on and on, though, I feel like my point is made. Similarly to classical mechanics, any measurable

quantity or observable of a system can be obtained from the wave function. As we’ll see later, these observables

can be deduced from the wave function through the use of operators.

The association of the wave function with a probability is sometimes referred to as Born’s rule, formulated

by physicist Max Born in 1926. This association places an important requirement on the wave function:

normalization. Inherent in some wave function being defined as a probability distribution is the fact that it

must integrate to zero over all positions. That is,

∫

all x

Ψ∗(x, t)Ψ(x, t)dx = 1 (11.2.2)
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In addition to this requirement are subsequent conditions the wave function must satisfy. For any wave function

Ψ(x, t),

• It must be single-valued. That is, for any spatial coordinate x0, Ψ(x0, t) must return only one scalar

value. If this were not the case, a particle would have more than one probability of being in a position in

space. A more mathematically rigorous way of describing this condition is to say that Ψ must be injective

or one-to-one.

• It must be twice-continuously differentiable. In other words, the second derivative of Ψ(x, t) must exist,

otherwise, the Schrödinger equation could not be setup.

• It may not have an infinite amplitude over a finite interval. Otherwise, |Ψ(x, t)|2 could not be properly

normalized. For example, the function ψ(x) = e−x on x ∈ [−∞,∞] has an infinite amplitude as x→ −∞
and therefore cannot act as a wave function. In contrast, the wave function ψ(x) = e−x on x ∈ [0,∞] has

a finite amplitude over the entire amplitude and so it can be properly normalized and is therefore a wave

function.

11.2.2 All Observables Have a Corresponding Operator

The second postulate of quantum mechanics we’ll concern ourselves with can be stated as follows:

For every measurable property of a system there exists a corresponding linear, Hermitian operator

in quantum mechanics.

Suppose, for example, that we measured the momentum of a ball rolling down a hill. Further suppose that we

wanted to perform this same experiment at a quantum mechanical-level, modeling an electron rolling down a

really small hill. In classical physics we could measure the momentum of the ball exactly, however, in quantum

mechanics we could not (for a myriad of reasons). Instead, we use quantum mechanical operators to determine

these observables. Amazingly, if the classical formula for a physical quantity is expressed in terms of, say,

momentum, we can create the corresponding quantum mechanical operator by replacing every instance of the

momentum with the momentum operator, p̂. As an example, consider the classical kinetic energy formula,

T = p2/2m. To create the corresponding operator in quantum mechanics we can simply replace the momentum

by its operator. Hence,

T̂ =
1

2m

(
−i} ∂

∂x

)2

= − }2

2m

∂2

∂x2

is the kinetic energy operator. Of course, this is assuming we knew the momentum operator. Now we’ll go onto

show where some of these operators come from.

We’ve already been introduced to one of these operators, the Hamiltonian operator, Ĥ, which returns the

total energy of the system. Just as we could measure the total energy of a classical system by considering an

object’s position and momentum, we can measure the total energy of a quantum system by operating on the

wave function with Ĥ.

Interestingly, we can “derive” the other important quantum mechanical operators only knowing the form

of Ĥ. Recall that the Hamiltonian is written

Ĥ = − }2

2m

∂2

∂x2
+ V (x)

and represents the total energy of the system. By definition, V (x) represents the potential energy of the system

and so we can immediately deduce two more quantum mechanical operators, those for the kinetic and potential
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Observable Symbol Operation (1D) Operation (3D)

Position x̂ x (x, y, z)

Momentum p̂ −i} ∂

∂x
−i}

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

Angular Momentum l̂x −i}
(
y
∂

∂z
− z ∂

∂y

)

l̂y −i}
(
z
∂

∂x
− x ∂

∂z

)

l̂z −i}
(
x
∂

∂y
− y ∂

∂x

)

Kinetic Energy T̂ − }2

2m

∂2

∂x2
− }2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

= − }2

2m
∇2

Potential Energy V̂ V (x) V (x, y, z)

Total Energy Ĥ − }2

2m

∂2

∂x2
+ V (x) − }2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V (x, y, z)

= − }2

2m
∇2 + V (x, y, z)

Table 11.1: Observables and their quantum mechanical operators. For those operations which contain only a
variable, such as x̂ or V̂ , it is implied that the operation is just multiplication. Also, for the 3D operations
which operate with a vector, the result of the operation will also be a vector.

energies:

T̂ = − }2

2m

∂2

∂x2
(11.2.3)

V̂ = V (x) (11.2.4)

Above it should be noted that both of these operators are represented using one spatial coordinate x. In three

dimensions, the result extends simply by exchanging x for y or z for the y- and z-directions, respectively.

With an operator for the kinetic energy we can also find the operator for a particle’s momentum. Recall

that kinetic energy is related to momentum by T = p2/2m which affords the relationship p =
√

2mT . Thus,

the momentum operator is given by

p̂ =

√
− }2

2m

∂2

∂x2
= −i} ∂

∂x
(11.2.5)

Above it’s probably clear why I put “derive” in quotes earlier. I must be breaking like 15 laws by taking the

square root of a second derivative but for now it’ll have to do. Table 12.1 illustrates relevant observables and

their quantum mechanical operators.

Of interest is the quantum mechanical operator for the angular momentum of a particle. Recall from
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classical mechanics that we define the angular momentum of a particle as

~L = ~r × ~p

where ~r = (x, y, z) is the particle’s position vector, ~p is the linear momentum vector and ~L is defined by their

cross product. Using quantum mechanical operators in place of the classical vectors ~L, ~r, and ~p, we have that

l̂ = x̂× p̂

= (x, y, z)× (−i})

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

= −i}

∣∣∣∣∣∣∣

î ĵ k̂

x y z
∂
∂x

∂
∂y

∂
∂z

∣∣∣∣∣∣∣

= (−i})

(
y
∂

∂z
− z ∂

∂y

)
î− (−i})

(
z
∂

∂x
− x ∂

∂z

)
ĵ + (−i})

(
x
∂

∂y
− y ∂

∂x

)
k̂

= (l̂x, l̂y, l̂z)

which agrees with the result presented in Table 12.1.

Of note is the fact that all quantum mechanical operators we’ll consider in quantum mechanics are

considered Hermitian operators, or self-adjoint. A Hermitian operator is an operator which is equal to its

conjugate transpose. As an example, the matrix

A =

[
1 −i
i 1

]

is Hermitian because A = (A∗)T . For us, the most immediate consequence of this fact is that we can write

∫ ∞

−∞
Ψ∗ÂΨdx =

∫ ∞

−∞
ΨÂ∗Ψ∗dx (11.2.6)

for some wave function Ψ(x, t) and operator Â. Moreover, it can be proven most generally that a Hermitian

operator enjoys the property

∫ ∞

−∞
Ψ∗mÂΨndx =

∫ ∞

−∞
ΨnÂ

∗Ψ∗mdx (11.2.7)

Later when we deduce the average value of quantum mechanical systems this relationship will make our lives

easier.

An amazing aspect of Hermitian operators is that they have strictly real eigenvalues. We’ve already been

introduced to a plethora of quantum mechanical operators such as those for position, momentum, and energy,

among others. Most of these operators contain complex numbers, however, if the eigenvalues of these operators

correspond to observable quantities surely their eigenvalues must be real numbers.

11.2.3 Results of Quantum Mechanical Measurements

The third postulate of quantum mechanics we’ll concern ourselves with can be stated as follows:

In any single measurement of the observable that corresponds to an operator Â, the only values

that will ever be measured are the eigenvalues of Â.

Generally, an operator will have a set of eigenfunctions and eigenvalues, indicated by writing ÂΨi = aiΨi for

some index i. Thus, the observables corresponding to Â are a1, a2, a3, . . . . The set of eigenvalues of an operator

Â is referred to as the spectrum of Â.
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Interestingly, this postulate does not comment on the function which Â operates on. That is, operating on

some function fi to afford Âfi = λifi yields the eigenvalue λi, however, we don’t need fi to be an eigenfunction

of Â. This is because the eigenfunctions of Â form a subset of an infinite number of possible functions which

satisfy the requirements of being a wave function.

For a quantum mechanical system, what differences arise when we operate on a function which is not

an eigenfunction of the operator? Take, for example, the Schrödinger equation, ĤΨi = EiΨi. We already

know that if the wave function Ψi is an eigenfunction of Ĥ then operating on Ψi will return the corresponding

energy of the system Ei. If Ψi were not an eigenfunction of Ĥ, although the measured value will still be some

eigenvalue of Ĥ, the eigenvalue cannot be predicted with certainty. That is, Ĥφi = Ejφi where i and j are not

necessarily equal.

It’s important to keep in mind that we still observe all possible energies Ej of the system described above.

Just because we operate on a function which is not an eigenfunction does not imply that we measure an energy

which would be otherwise unattainable. That would be violating the laws of quantum mechanics.

11.2.4 Expectations of Quantum Mechanical Measurements

The fourth postulate of quantum mechanics we’ll concern ourselves with can be stated as follows:

If the value of an observable quantity a is measured many times in a system described by the

normalized wave function Ψ(x, t), the expected value of all these measurements is given by

〈a〉 =

∫∞
−∞Ψ∗(x, t)ÂΨ(x, t)dx
∫∞
−∞Ψ∗(x, t)Ψ(x, t)dx

(11.2.8)

If the wave function Ψ(x, t) is properly normalized then the denominator of Equation (12.3.8) will evaluate

to 1. Notice that two cases apply to the wave function Ψ(x, t) in regard to the operator Â: Ψ is or is not an

eigenfunction of Â. Hence, we need to examine each case separately.

Firstly, we’ll consider the case where Ψ is an eigenfunction of Â. Then, it must be the case that ÂΨi = aiΨi

for some scalar ai. Then, Equation (12.3.8) becomes

〈a〉 =

∫ ∞

−∞
Ψ∗(x, t)ÂΨ(x, t)dx =

∫ ∞

−∞
Ψ∗(x, t)aiΨ(x, t)dx

=

∫ ∞

−∞
aiΨ

∗(x, t)Ψ(x, t)dx (11.2.9)

Here, recall that Ψ∗(x, t)Ψ(x, t)dx has a probabilistic interpretation so that the Equation (12.3.9) represents a

weighted average and is identical to how we may think of averages from a probabilistic standpoint using the law

of the unconscious statistician. Furthermore, by normalization we have that all measurements on the system

will give the same answer, namely, ai.

Now we consider the second case where Ψ might not be an eigenfunction of the operator Â. Recall that

since the eigenfunctions of Â form a complete set, we can represent Ψ as a linear combination of them,

Ψ(x, t) = b1φ1(x, t) + b2φ2(x, t) + · · ·+ bnφn(x, t) =

n∑

i=1

biφi(x, t)

where bi is some scalar coefficient and φ1, . . . , φn are wave functions and are members of the set of eigenfunctions

of Â. Because we can write Ψ such that it’s normalized, we have that
∑
b∗i bi = 1, that is, the coefficients in
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the expansion for Ψ are normalized as well. Substituting these results into Equation (12.3.8),

〈a〉 =

∫ ∞

−∞

(
n∑

i=1

b∗iφ
∗
i (x, t)

)
Â




n∑

j=1

bjφj(x, t)


 dx

=

∫ ∞

−∞

(
n∑

i=1

b∗iφ
∗
i (x, t)

)


n∑

j=1

ajbjφj(x, t)


 dx

=

n∑

i=1

n∑

j=1

ajb
∗
i bj

∫ ∞

−∞
φ∗i (x, t)φj(x, t)dx

This expression is simplified immensely when we recall that the eigenfunctions of an operator form an orthonor-

mal set so that the only nonzero terms in the integrand (and summation) above are those for which i = j.

Thus,

〈a〉 =

n∑

j=1

b∗jajbj =

n∑

j=1

|bj |2aj (11.2.10)

where, once again, we observe that the average value of a system is a weighted average. To provide an

intermittent concrete example, this equation could be rewritten to represent energies,

〈E〉 =

n∑

j=1

pjEj

where Ej is the energy of state j of the system and p(Ej) is the probability of observing an energy of Ej .

This provides us with a concrete interpretation of the coefficient |bj |2 in Equation (12.3.10): it represents the

probability of observing a value of aj for some observable a.

Using the example of energy once more, suppose that a system is in an energy eigenstate ψ1 so that

Ĥψ1 = E1ψ1. Then, all of the coefficients bj are zero, except for b1 which is equal to 1. Therefore, the

probability of observing an energy of E1 is certain, in accordance with postulate 3.

In any case, whether Ψ(x, t) is an eigenfunction of Â in Equation (12.3.8) or not, we’ve seen that wave

functions and observables for quantum mechanical systems have almost strictly probabilistic interpretations.

As an example, suppose we wanted to determine the average momentum for a free particle of mass

m in two cases, where ψ1(x) = e−ikx and where ψ2(x) = cos(kx). While evaluating these quantities isn’t

very difficult, their results will offer some valuable discussion. Also, notice that we haven’t gone necessarily

normalized either of these wave functions so the denominator in Equation (12.3.8) isn’t necessarily one.

〈p1〉 =

∫∞
−∞ ψ∗1 p̂ψ1dx∫∞
−∞ ψ∗1ψ1dx

=

∫∞
−∞ eikx

(
−i} ∂

∂xe
−ikx) dx

∫∞
−∞ eikxe−ikxdx

= −i}
∫∞
−∞ eikx(−ik)e−ikxdx

∫∞
−∞ dx

= −k}
∫∞
−∞ eikxe−ikxdx
∫∞
−∞ dx

= −k}

We’ve shown that the average momentum of the wave function ψ1(x) = e−ikx is 〈p1〉 = −k}. Notice that

we could still evaluate this quantity even though ψ1(x) was not normalized. Now we’ll run through the same
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calculation with ψ2(x):

〈p2〉 =

∫∞
−∞ ψ∗2 p̂ψ2dx∫∞
−∞ ψ∗2ψ2dx

=

∫∞
−∞ cos(kx)

(
−i} ∂

∂x cos(kx)
)
dx

∫∞
−∞ cos2(kx)dx

= −i}
∫∞
−∞ cos(kx) (−k sin(kx)) dx

∫∞
−∞ cos2(kx)dx

= i}k
∫∞
−∞ cos(kx) sin(kx)dx
∫∞
−∞ cos2(kx)dx

Notice that the integral in the numerator evaluates to zero (by symmetry) so that the average momentum

of ψ2(x) is 〈p2〉 = 0. How are these results related, if at all? We can take the analysis one step further by

recognizing that by Euler’s formula, we can write cos(kx) = 1
2 (e−ikx + eikx). Therefore, the cosine function

can be thought of as a superposition of waves defined by the wave functions ψ+(x) = eikx and ψ−(x) = e−ikx.

We’ve determined the average momentum of ψ−(x) a moment ago as −k} and the average momentum of ψ+(x)

can be readily determined as +k}. So, for the wave function cos(kx), half of the time the momentum will be

measured as −k} and the other half of the time it will be measured as +k}. Hence, the average momentum

must come to zero, as illustrated.

The Ehrenfest Theorem

11.2.5 Time Evolution of a Quantum Mechanical System

The fifth postulate of quantum mechanics we’ll concern ourselves with can be stated as follows:

The evolution in time of a quantum mechanical system is governed by the time-dependent Schrödinger

equation,

ĤΨ(x, t) = i}
∂Ψ(x, t)

∂t
(11.2.11)

11.2.6 The Indistinguishability of Electrons

The sixth postulate of quantum mechanics we’ll concern ourselves with can be stated as follows:

Wave functions describing a many-electron system must be antisymmetric under the exchange of

any two electrons.

This postulate is more commonly referred to as the Pauli exclusion principle. Stated alternatively, the

Pauli exclusion principle requires that the wave function for a multi-electron system be zero if all quantum

numbers of any two electrons are the same.

11.3 Dirac Notation

Generalizing the idea of vectors and vector algebra to N -dimensional space, including complex numbers, can

be done with relative ease using Dirac notation, which expresses results in an exceedingly concise and simple

manner. A ket vector, or simply a ket, is denoted |a〉. In terms of familiar linear algebra, kets can be thought of

as column vectors. Similarly, a bra vector, or simply a bra, is denoted 〈a|, and can be thought of as an analog

to a row vector.
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With these definitions, we can define the inner product of 〈a| and |b〉 as

〈a| |b〉 = 〈a|b〉 = a†b =




a∗1
a∗2
...

a∗n




(
b1 b2 . . . bn

)
=

n∑

i=1

a∗i bi (11.3.1)

where a† is the complex conjugate of the vector a. This notation affords the natural and intuitive result that

〈a|a〉 = a†a =
∑

i=1

|ai|2

just as the definition for regular vectors.
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THE INTERMEDIATE QUANTUM

MECHANICAL FRAMEWORK

All models are wrong, but some are useful.

—George E.P. Box

In particular, Schrödinger found an equation for which the energy eigenfunctions were stationary wave

solutions and the square of the magnitude of the expansion coefficients of the wave function with respect to the

energy eigenfunction could be interpreted as a probability.

The quantum mechanical framework provides the equations and postulates necessary to explore quantum

models and phenomena. We’ll start by introducing the Schrödinger Equation, the quantum mechanical analog

to Newton’s second law of motion, F = ma. This equation will serve as a basic introduction to operators and

motivation to define the quantum mechanical postulates, which can be thought of as necessary conditions for

any allowable quantum mechanical state.

Together, the Schrödinger equation and the quantum mechanical postulates will allow us to explore the

different types of particle motion—translational, vibrational, rotational, and electronic—and their relevant

models.

Importantly, remember that in the context of history, quantum mechanics and energy quantization were

not readily adopted by the scientific community and required many years of incredibly smart people advocating

for the theory. The Schrödinger equation is no different.

12.1 Dirac Notation

For the purposes of solving the Schrödinger equation on a computer, it is highly convenient to turn every into

linear algebra. Enter: Dirac notation.

Dirac notation is used ubiquitously in quantum mechanics, using “bra-ket” notation to represent wave

functions as vectors. A bra is represented as 〈ψ| and a “ket” as |ψ〉 for some wave function ψ. In terms of more

familiar linear algebra, a bra can be thought of as a row vector and a ket a column vector. Since bras and kets

173
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can be represented as vectors, they enjoy the usual rules of linear algebra:

|A〉 = |B〉+ |C〉
|C〉 = (−1 + 2i) |D〉

|D〉 =

∫ ∞

0

e−x
2 |x〉 dx

Above, A throughD represent some arbitrary vectors (or in our case, wave functions). This notation is especially

useful because bra-ket notation is for linear algebra when we deal with complex numbers. Typically, in quantum

mechanics, we deal with complex-valued wave functions which may be represented as a superposition of some

simpler states. For example, consider the spin of electron: We know that it can occupy one of two spin states,

±1/2, though, until measuring the spin it exists in a superposition of both states. Symbolically, this may equate

to

Ψ = aαΨα + aβΨβ

for two spin states Ψα and Ψβ with respective probabilities aα and aβ . We can think of Ψα and Ψβ as

forming the basis of Ψ in that they represent all possible states of the wave function and remain orthogonal (or

independent) from one another. If we instead allowed Ψ to occupy one of a number of states, our superposition

takes the form

Ψ =

∞∑

j=1

ajΨj

for some states j = 1, 2, 3, . . . and basis functions Ψj . Now, let’s use Dirac notation! Since Ψ is just some wave

function, we can express it is a ket:

|Ψ〉 =

∞∑

j=1

aj |Ψj〉 (12.1.1)

Finally, we can express |Ψ〉, also referred to as the state vector, as a column vector:

|Ψ〉 =




a1

a2

...

an




(12.1.2)

In quantum mechanics, we are very often interested in the complex conjugate of a wave function. Refer

to the probability of finding an electron defined by the wave function ψ(x) at any point in space:

∫ ∞

−∞
ψ∗ψdx (12.1.3)

How can we perform this type of operation in Dirac notation? This is what the bra vector is for. We define a

bra as a the adjoint of a ket1:

〈Ψ| =
(
a∗1 a∗2 . . . a∗n

)
(12.1.4)

1the adjoint is the complex transpose of a vector
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Now, the scalar product between the bra and ket vector of Ψ becomes

〈Ψ| |Ψ〉 = 〈Ψ|Ψ〉 =
(
a∗1 a∗2 . . . a∗n

)




a1

a2

...

an




=

n∑

i=1

|ai|2 (12.1.5)

which is a perfectly valid quantity to integrate over, as in Equation (12.1.3).

12.2 The Schrödinger Equation

A year following de Broglie’s suggestion that matter may have wave-like properties, Erwin Schrödinger discov-

ered the law of quantum mechanics, commonly referred to as the Schrödinger equation. It is the law of quantum

mechanics in the same way that Newton’s laws are the laws of classical mechanics. It gives the evolution over

time of a wave function, the quantum-mechanical characterization of a system. Upon initial development of

the theory, Schrödinger used the term “wave mechanics” to describe his theory.

It’s important to note that the Schrödinger equation isn’t necessarily “derived”. Although we can derive

the classical wave equation (Appendix ??) and although I’ll present a formulation of the Schrödinger equation

from that, we rely on de Broglie’s relation between wavelength and momentum, an equation which in and of

itself seemingly appeared out of thin air. In fact, in his lectures on physics Richard Feynman opined that

We do not intend to have you think we have derived the Schrödinger equation but only wish to

show you one way of thinking about it. When Schrödinger first wrote it down, he gave a kind of

derivation based on some heuristic arguments and some brilliant intuitive guesses. Some of the

arguments he used were even false, but that does not matter; the only important thing is that the

ultimate equation gives a correct description of nature... Where did we get that from? Nowhere.

It’s not possible to derive it from anything you know. It came out of the mind of Schrödinger,

invented in his struggle to find an understanding of the experimental observations of the real world.

Nevertheless, we may use the classical wave equation to arrive at Schrödinger’s result. To begin, suppose

that we have a standing wave Ψ(x, t) = ψ(x) cos(ωt). Recall the classical wave equation,

∂2y

∂x2
=

1

v2

∂2y

∂t2
(12.2.1)

a derivation for which can be found in Appendix ??. Substituting Ψ(x, t) for the wave function y we have that

∂2Ψ(x, t)

∂x2
=

1

v2

∂2Ψ(x, t)

∂t2

∂2

∂x2

[
ψ(x) cos(ωt)

]
=

1

v2

∂2

∂t2

[
ψ(x) cos(ωt)

]

cos(ωt)
∂2ψ(x)

∂x2
=
ω2

v2

(
− ψ(x) cos(ωt)

)

∂2ψ(x)

∂x2
+
ω2

v2
ψ(x) = 0 (12.2.2)

Recall that the angular frequency ω is related to the linear frequency ν by ω = 2πν and that the velocity v

of the wave is related to the frequency by v = λν. After a little bit of algebraic gymnastics we can rewrite

Equation (12.2.2) as

∂2ψ(x)

∂x2
+

4π2

λ2
ψ(x) = 0 (12.2.3)

To satisfy the properties of quantum systems we now introduce the de Broglie relation to the constraints
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on this wave. By that I mean we must relate the wavelength to the wave’s momentum. Before we make this

substitution, however, note that we can relate the momentum of a wave to its energy by

1

2
mv2 =

p2

2m
= E − V

p =
√

2m(E − V ) (12.2.4)

where E represents the total energy of the wave, V represents its potential energy, and therefore E−V represents

its kinetic energy by the law of conservation of energy. Using de Broglie’s relation we have that

λ =
h

p
=

h√
2m(E − V )

and Equation (12.2.3) can be expressed as

∂2ψ(x)

∂x2
+ 4π2

(√
2m(E − V )

h

)2

ψ(x) = 0

∂2ψ(x)

∂x2
+

2m(E − V )

}2
ψ(x) = 0

}2

2m

∂2ψ(x)

∂x2
+ (E − V )ψ(x) = 0

− }2

2m

∂2ψ(x)

∂x2
+ V ψ(x) = Eψ(x)

Oftentimes the potential energy of a system changes with position2 and so we write V (x). This affords us the

one-dimensional time-independent Schrödinger equation, written

− }2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) = Eψ(x) (12.2.5)

This is the fundamental equation used to study stationary states of quantum mechanical systems. Using the

classical wave equation in three dimensions instead of just one we can derive a similar relationship for the

Schrödinger equation, generalized to three-dimensional space,

− }2

2m
∇2ψ(~r) + V (~r)ψ(~r) = Eψ(~r) (12.2.6)

where ~r = (x, y, z). Above I took advantage of the Laplacian operator, ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 to simplify notation.

Refer to Appendix ?? for discussion on waves in more than one dimension and the Laplacian operator.

The generalization of the Schrödinger equation to three dimensions illustrates its similarity to the classical

equation for particle energy, derived from Hamiltonian mechanics:

1

2m
(p2
x + p2

y + p2
z) + V (x, y, z) = E (12.2.7)

where px, py, and pz, are the momenta in the x, y, and z directions, respectively. For this reason, the Schrödinger

equation is oftentimes written as

Ĥψ = Eψ (12.2.8)

where Ĥ is the Hamiltonian operator (or the total energy operator), and ψ is the spatial component of the wave

function as defined previously.

There is an analogous quantum mechanical form of the time-dependent classical wave equation, referred

2This is fairly intuitive. If we are dealing with charges (which, last I checked, electrons and protons have charges) there are
electric fields inherent in the system and with each electric field is an electric potential which defines the potential energy of the
system.
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to as the time-dependent Schrödinger equation, written

− }2

2m

∂2Ψ(x, t)

∂x2
+ V (x, t)Ψ(x, t) = i}

∂Ψ(x, t)

∂t
(12.2.9)

with an analogous three-dimensional form,

− }2

2m
∇2Ψ(~r, t) + V (~r, t)Ψ(~r, t) = i}

∂Ψ(~r, t)

∂t
(12.2.10)

No matter which of the Equations (12.2.5) through (12.2.10) you consider, there is an intuitive interpre-

tation of Schrödinger’s Equation which should be kept in mind. The Hamiltonian operator Ĥ has two parts:

the ∇2 part represents the “wiggliness” of the wave function while V simply represents the potential energy of

the system at various points in space. The Schrödinger equation requires both of these parts to counterbalance

each other at every point in space so that they always combine to give the same value of the total energy E.

12.2.1 Quantum Mechanical Operators and Observables

To measure any observable quantity, such as energy, momentum, or position, in quantum mechanics we require

an operator, unlike in classical mechanics where those may be measurable. One common operator is the

Hamiltonian that we see in the (one-dimensional) Schrödinger equation,

Ĥ = − }2

2m

∂2

∂x2
+ V (x)

Simply put, an operator is a way of writing instructions for whatever follows. I could write B̂f(x) where

B̂ implies

• Take the square root of the function

• Set the function equal to 4

• Do laundry

• Take the square root of the function again

and that would be a valid operator. A more relevant example might be the differentiation and integration

operators that we are familiar with.

In quantum mechanics we’ll deal only with linear operators, those which satisfy the relation

Â[c1f(x) + c2g(x)] = c1Âf(x) + c2Âg(x)

where c1 and c2 are constants and f(x) and g(x) are some functions. Common linear operators are differentiation

and integration, as mentioned previously. In contrast, the “square” operator is not linear. If we let Ŝ be the

operator telling us to square an expression,

Ŝ[f(x) + g(x)] = f2(x) + 2f(x)g(x) + g2(x) 6= f2(x) + g2(x)

and therefore Ŝ[f(x) + g(x)] 6= Ŝf(x) + Ŝg(x).

12.2.2 The Schrödinger Equation as an Eigenvalue Equation

The Schrödinger equation is an example of an eigenvalue equation. An eigenvalue equation is any relationship

of the form

Âfi = λifi (12.2.11)
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where Â is an operator, fi is a function, referred to as the eigenfunction, and λi is some scalar constant, referred

to as the eigenvalue. Typically an operator can have an infinite number of eigenfunctions so that the subscript

i is used to denote which eigenfunction corresponds to which eigenvalue. In the case of Equation (12.2.8),

the Hamiltonian operator Ĥ is the quantum mechanical operator that returns the total energy E which is the

eigenvalue of the equation. Also, the wave function ψ is the eigenfunction.

The fact that Schrödinger’s equation is an eigenvalue equation should agree with your intuition. As we’ll

come to see, the wave function of a particle completely defines that particle: everything about the particle’s

position, linear and angular momentums, kinetic and potential energies, etc., can be determined from the wave

function. As we operate on a wave function Ψ, then, we’re only concerned with that particular Ψ. If Ψ were to

change at all then we’re no longer studying the particular particle we concerned ourselves with initially. Hence,

when we operate on a wave function, we’re only concerned with those operators which return the same wave

function so that we know we’re studying the same particle. This is a rationale behind the Schrödinger equation

being an eigenvalue equation.

12.3 The Quantum Mechanical Postulates

Quantum mechanical postulates formalize the conjectures made by scientists on the behavior of matter at a

quantum level. Establishing these postulates is similar to setting up a series of axioms and then logically

deducing the consequences of those axioms. Just as the basic definitions of knot theory had to be elucidated

before Lisa Piccirillo could solve the Conway knot problem, quantum mechanical postulates must be established

before we can go on to prove more impactful results. Energy quantization, confinement, and uncertainty may

all be explained with a properly chosen set of postulates.

12.3.1 The Physical Interpretation of a Wave Function is Probability

Our first postulate of quantum mechanics can be stated as follows:

The state of a quantum mechanical particle is defined completely by a wave function Ψ(~x, t). The

probability that the particle will be found at time t0 in a spatial interval of width dx centered at ~x0

is given by

Ψ(~x0, t0)∗Ψ(~x0, t0)dx (12.3.1)

The first point, that a quantum mechanical particle is completely defined by the wave function, cannot be

understated. Recall from classical mechanics that our goal in any situation is ultimately to model the trajectory

of a system as a function of the time. That is, we’re looking for some function x(t) which tells us the position

of a particle at any time t (with only one spatial coordinate considered to simplify notation). From this, we

can deduce any quantity we want:

• The velocity of the particle is given by v = dx
dt and the acceleration is given by a = d2x

dt2 . Moreover, the

momentum can be found as p = mdx
dt .

• The force acting on the particle is given by F = mdx2

dt2 .

• The kinetic energy can be found as T = 1
2m
(
dx
dt

)2

• The gravitational, coulombic (assuming charges are present and known), and spring potential energies

can be found as

Ugravity = mgx, Ucoulombic =
kQ1Q2

x
, Uspring =

1

2
kx2
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The list may go on and on, though, I feel like my point is made. Similarly to classical mechanics, any measurable

quantity or observable of a system can be obtained from the wave function. As we’ll see later, these observables

can be deduced from the wave function through the use of operators.

The association of the wave function with a probability is sometimes referred to as Born’s rule, formulated

by physicist Max Born in 1926. This association places an important requirement on the wave function:

normalization. Inherent in some wave function being defined as a probability distribution is the fact that it

must integrate to zero over all positions. That is,

∫

all x

Ψ∗(x, t)Ψ(x, t)dx = 1 (12.3.2)

In addition to this requirement are subsequent conditions the wave function must satisfy. For any wave function

Ψ(x, t),

• It must be single-valued. That is, for any spatial coordinate x0, Ψ(x0, t) must return only one scalar

value. If this were not the case, a particle would have more than one probability of being in a position in

space. A more mathematically rigorous way of describing this condition is to say that Ψ must be injective

or one-to-one.

• It must be twice-continuously differentiable. In other words, the second derivative of Ψ(x, t) must exist,

otherwise, the Schrödinger equation could not be setup.

• It may not have an infinite amplitude over a finite interval. Otherwise, |Ψ(x, t)|2 could not be properly

normalized. For example, the function ψ(x) = e−x on x ∈ [−∞,∞] has an infinite amplitude as x→ −∞
and therefore cannot act as a wave function. In contrast, the wave function ψ(x) = e−x on x ∈ [0,∞] has

a finite amplitude over the entire amplitude and so it can be properly normalized and is therefore a wave

function.

12.3.2 All Observables Have a Corresponding Operator

The second postulate of quantum mechanics we’ll concern ourselves with can be stated as follows:

For every measurable property of a system there exists a corresponding linear, Hermitian operator

in quantum mechanics.

Suppose, for example, that we measured the momentum of a ball rolling down a hill. Further suppose that we

wanted to perform this same experiment at a quantum mechanical-level, modeling an electron rolling down a

really small hill. In classical physics we could measure the momentum of the ball exactly, however, in quantum

mechanics we could not (for a myriad of reasons). Instead, we use quantum mechanical operators to determine

these observables. Amazingly, if the classical formula for a physical quantity is expressed in terms of, say,

momentum, we can create the corresponding quantum mechanical operator by replacing every instance of the

momentum with the momentum operator, p̂. As an example, consider the classical kinetic energy formula,

T = p2/2m. To create the corresponding operator in quantum mechanics we can simply replace the momentum

by its operator. Hence,

T̂ =
1

2m

(
−i} ∂

∂x

)2

= − }2

2m

∂2

∂x2

is the kinetic energy operator. Of course, this is assuming we knew the momentum operator. Now we’ll go onto

show where some of these operators come from.

We’ve already been introduced to one of these operators, the Hamiltonian operator, Ĥ, which returns the

total energy of the system. Just as we could measure the total energy of a classical system by considering an

object’s position and momentum, we can measure the total energy of a quantum system by operating on the

wave function with Ĥ.
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Interestingly, we can “derive” the other important quantum mechanical operators only knowing the form

of Ĥ. Recall that the Hamiltonian is written

Ĥ = − }2

2m

∂2

∂x2
+ V (x)

and represents the total energy of the system. By definition, V (x) represents the potential energy of the system

and so we can immediately deduce two more quantum mechanical operators, those for the kinetic and potential

energies:

T̂ = − }2

2m

∂2

∂x2
(12.3.3)

V̂ = V (x) (12.3.4)

Above it should be noted that both of these operators are represented using one spatial coordinate x. In three

dimensions, the result extends simply by exchanging x for y or z for the y- and z-directions, respectively.

With an operator for the kinetic energy we can also find the operator for a particle’s momentum. Recall

that kinetic energy is related to momentum by T = p2/2m which affords the relationship p =
√

2mT . Thus,

the momentum operator is given by

p̂ =

√
− }2

2m

∂2

∂x2
= −i} ∂

∂x
(12.3.5)

Above it’s probably clear why I put “derive” in quotes earlier. I must be breaking like 15 laws by taking the

square root of a second derivative but for now it’ll have to do. Table 12.1 illustrates relevant observables and

their quantum mechanical operators.

Of interest is the quantum mechanical operator for the angular momentum of a particle. Recall from

classical mechanics that we define the angular momentum of a particle as

~L = ~r × ~p

where ~r = (x, y, z) is the particle’s position vector, ~p is the linear momentum vector and ~L is defined by their

cross product. Using quantum mechanical operators in place of the classical vectors ~L, ~r, and ~p, we have that

l̂ = x̂× p̂

= (x, y, z)× (−i})

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

= −i}

∣∣∣∣∣∣∣

î ĵ k̂

x y z
∂
∂x

∂
∂y

∂
∂z

∣∣∣∣∣∣∣

= (−i})

(
y
∂

∂z
− z ∂

∂y

)
î− (−i})

(
z
∂

∂x
− x ∂

∂z

)
ĵ + (−i})

(
x
∂

∂y
− y ∂

∂x

)
k̂

= (l̂x, l̂y, l̂z)

which agrees with the result presented in Table 12.1.

Of note is the fact that all quantum mechanical operators we’ll consider in quantum mechanics are

considered Hermitian operators, or self-adjoint. A Hermitian operator is an operator which is equal to its

conjugate transpose. As an example, the matrix

A =

[
1 −i
i 1

]
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Observable Symbol Operation (1D) Operation (3D)

Position x̂ x (x, y, z)

Momentum p̂ −i} ∂

∂x
−i}

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

Angular Momentum l̂x −i}
(
y
∂

∂z
− z ∂

∂y

)

l̂y −i}
(
z
∂

∂x
− x ∂

∂z

)

l̂z −i}
(
x
∂

∂y
− y ∂

∂x

)

Kinetic Energy T̂ − }2

2m

∂2

∂x2
− }2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

= − }2

2m
∇2

Potential Energy V̂ V (x) V (x, y, z)

Total Energy Ĥ − }2

2m

∂2

∂x2
+ V (x) − }2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V (x, y, z)

= − }2

2m
∇2 + V (x, y, z)

Table 12.1: Observables and their quantum mechanical operators. For those operations which contain only a
variable, such as x̂ or V̂ , it is implied that the operation is just multiplication. Also, for the 3D operations
which operate with a vector, the result of the operation will also be a vector.
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is Hermitian because A = (A∗)T . For us, the most immediate consequence of this fact is that we can write

∫ ∞

−∞
Ψ∗ÂΨdx =

∫ ∞

−∞
ΨÂ∗Ψ∗dx (12.3.6)

for some wave function Ψ(x, t) and operator Â. Moreover, it can be proven most generally that a Hermitian

operator enjoys the property

∫ ∞

−∞
Ψ∗mÂΨndx =

∫ ∞

−∞
ΨnÂ

∗Ψ∗mdx (12.3.7)

Later when we deduce the average value of quantum mechanical systems this relationship will make our lives

easier.

An amazing aspect of Hermitian operators is that they have strictly real eigenvalues. We’ve already been

introduced to a plethora of quantum mechanical operators such as those for position, momentum, and energy,

among others. Most of these operators contain complex numbers, however, if the eigenvalues of these operators

correspond to observable quantities surely their eigenvalues must be real numbers.

12.3.3 Results of Quantum Mechanical Measurements

The third postulate of quantum mechanics we’ll concern ourselves with can be stated as follows:

In any single measurement of the observable that corresponds to an operator Â, the only values

that will ever be measured are the eigenvalues of Â.

Generally, an operator will have a set of eigenfunctions and eigenvalues, indicated by writing ÂΨi = aiΨi for

some index i. Thus, the observables corresponding to Â are a1, a2, a3, . . . . The set of eigenvalues of an operator

Â is referred to as the spectrum of Â.

Interestingly, this postulate does not comment on the function which Â operates on. That is, operating on

some function fi to afford Âfi = λifi yields the eigenvalue λi, however, we don’t need fi to be an eigenfunction

of Â. This is because the eigenfunctions of Â form a subset of an infinite number of possible functions which

satisfy the requirements of being a wave function.

For a quantum mechanical system, what differences arise when we operate on a function which is not

an eigenfunction of the operator? Take, for example, the Schrödinger equation, ĤΨi = EiΨi. We already

know that if the wave function Ψi is an eigenfunction of Ĥ then operating on Ψi will return the corresponding

energy of the system Ei. If Ψi were not an eigenfunction of Ĥ, although the measured value will still be some

eigenvalue of Ĥ, the eigenvalue cannot be predicted with certainty. That is, Ĥφi = Ejφi where i and j are not

necessarily equal.

It’s important to keep in mind that we still observe all possible energies Ej of the system described above.

Just because we operate on a function which is not an eigenfunction does not imply that we measure an energy

which would be otherwise unattainable. That would be violating the laws of quantum mechanics.

12.3.4 Expectations of Quantum Mechanical Measurements

The fourth postulate of quantum mechanics we’ll concern ourselves with can be stated as follows:

If the value of an observable quantity a is measured many times in a system described by the

normalized wave function Ψ(x, t), the expected value of all these measurements is given by

〈a〉 =

∫∞
−∞Ψ∗(x, t)ÂΨ(x, t)dx
∫∞
−∞Ψ∗(x, t)Ψ(x, t)dx

(12.3.8)
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If the wave function Ψ(x, t) is properly normalized then the denominator of Equation (12.3.8) will evaluate

to 1. Notice that two cases apply to the wave function Ψ(x, t) in regard to the operator Â: Ψ is or is not an

eigenfunction of Â. Hence, we need to examine each case separately.

Firstly, we’ll consider the case where Ψ is an eigenfunction of Â. Then, it must be the case that ÂΨi = aiΨi

for some scalar ai. Then, Equation (12.3.8) becomes

〈a〉 =

∫ ∞

−∞
Ψ∗(x, t)ÂΨ(x, t)dx =

∫ ∞

−∞
Ψ∗(x, t)aiΨ(x, t)dx

=

∫ ∞

−∞
aiΨ

∗(x, t)Ψ(x, t)dx (12.3.9)

Here, recall that Ψ∗(x, t)Ψ(x, t)dx has a probabilistic interpretation so that the Equation (12.3.9) represents a

weighted average and is identical to how we may think of averages from a probabilistic standpoint using the law

of the unconscious statistician. Furthermore, by normalization we have that all measurements on the system

will give the same answer, namely, ai.

Now we consider the second case where Ψ might not be an eigenfunction of the operator Â. Recall that

since the eigenfunctions of Â form a complete set, we can represent Ψ as a linear combination of them,

Ψ(x, t) = b1φ1(x, t) + b2φ2(x, t) + · · ·+ bnφn(x, t) =

n∑

i=1

biφi(x, t)

where bi is some scalar coefficient and φ1, . . . , φn are wave functions and are members of the set of eigenfunctions

of Â. Because we can write Ψ such that it’s normalized, we have that
∑
b∗i bi = 1, that is, the coefficients in

the expansion for Ψ are normalized as well. Substituting these results into Equation (12.3.8),

〈a〉 =

∫ ∞

−∞

(
n∑

i=1

b∗iφ
∗
i (x, t)

)
Â




n∑

j=1

bjφj(x, t)


 dx

=

∫ ∞

−∞

(
n∑

i=1

b∗iφ
∗
i (x, t)

)


n∑

j=1

ajbjφj(x, t)


 dx

=

n∑

i=1

n∑

j=1

ajb
∗
i bj

∫ ∞

−∞
φ∗i (x, t)φj(x, t)dx

This expression is simplified immensely when we recall that the eigenfunctions of an operator form an orthonor-

mal set so that the only nonzero terms in the integrand (and summation) above are those for which i = j.

Thus,

〈a〉 =

n∑

j=1

b∗jajbj =

n∑

j=1

|bj |2aj (12.3.10)

where, once again, we observe that the average value of a system is a weighted average. To provide an

intermittent concrete example, this equation could be rewritten to represent energies,

〈E〉 =

n∑

j=1

pjEj

where Ej is the energy of state j of the system and p(Ej) is the probability of observing an energy of Ej .

This provides us with a concrete interpretation of the coefficient |bj |2 in Equation (12.3.10): it represents the

probability of observing a value of aj for some observable a.

Using the example of energy once more, suppose that a system is in an energy eigenstate ψ1 so that

Ĥψ1 = E1ψ1. Then, all of the coefficients bj are zero, except for b1 which is equal to 1. Therefore, the
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probability of observing an energy of E1 is certain, in accordance with postulate 3.

In any case, whether Ψ(x, t) is an eigenfunction of Â in Equation (12.3.8) or not, we’ve seen that wave

functions and observables for quantum mechanical systems have almost strictly probabilistic interpretations.

As an example, suppose we wanted to determine the average momentum for a free particle of mass

m in two cases, where ψ1(x) = e−ikx and where ψ2(x) = cos(kx). While evaluating these quantities isn’t

very difficult, their results will offer some valuable discussion. Also, notice that we haven’t gone necessarily

normalized either of these wave functions so the denominator in Equation (12.3.8) isn’t necessarily one.

〈p1〉 =

∫∞
−∞ ψ∗1 p̂ψ1dx∫∞
−∞ ψ∗1ψ1dx

=

∫∞
−∞ eikx

(
−i} ∂

∂xe
−ikx) dx

∫∞
−∞ eikxe−ikxdx

= −i}
∫∞
−∞ eikx(−ik)e−ikxdx

∫∞
−∞ dx

= −k}
∫∞
−∞ eikxe−ikxdx
∫∞
−∞ dx

= −k}

We’ve shown that the average momentum of the wave function ψ1(x) = e−ikx is 〈p1〉 = −k}. Notice that

we could still evaluate this quantity even though ψ1(x) was not normalized. Now we’ll run through the same

calculation with ψ2(x):

〈p2〉 =

∫∞
−∞ ψ∗2 p̂ψ2dx∫∞
−∞ ψ∗2ψ2dx

=

∫∞
−∞ cos(kx)

(
−i} ∂

∂x cos(kx)
)
dx

∫∞
−∞ cos2(kx)dx

= −i}
∫∞
−∞ cos(kx) (−k sin(kx)) dx

∫∞
−∞ cos2(kx)dx

= i}k
∫∞
−∞ cos(kx) sin(kx)dx
∫∞
−∞ cos2(kx)dx

Notice that the integral in the numerator evaluates to zero (by symmetry) so that the average momentum

of ψ2(x) is 〈p2〉 = 0. How are these results related, if at all? We can take the analysis one step further by

recognizing that by Euler’s formula, we can write cos(kx) = 1
2 (e−ikx + eikx). Therefore, the cosine function

can be thought of as a superposition of waves defined by the wave functions ψ+(x) = eikx and ψ−(x) = e−ikx.

We’ve determined the average momentum of ψ−(x) a moment ago as −k} and the average momentum of ψ+(x)

can be readily determined as +k}. So, for the wave function cos(kx), half of the time the momentum will be

measured as −k} and the other half of the time it will be measured as +k}. Hence, the average momentum

must come to zero, as illustrated.

The Ehrenfest Theorem

12.3.5 Time Evolution of a Quantum Mechanical System

The fifth postulate of quantum mechanics we’ll concern ourselves with can be stated as follows:

The evolution in time of a quantum mechanical system is governed by the time-dependent Schrödinger

equation,

ĤΨ(x, t) = i}
∂Ψ(x, t)

∂t
(12.3.11)
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12.3.6 The Indistinguishability of Electrons

The sixth postulate of quantum mechanics we’ll concern ourselves with can be stated as follows:

Wave functions describing a many-electron system must be antisymmetric under the exchange of

any two electrons.

This postulate is more commonly referred to as the Pauli exclusion principle. Stated alternatively, the

Pauli exclusion principle requires that the wave function for a multi-electron system be zero if all quantum

numbers of any two electrons are the same.



CHAPTER

13

QUANTUM MECHANICAL MODELS OF

TRANSLATIONAL MOTION

One of the principal objects of theoretical research is to find the point of view from which the subject

appears in the greatest simplicity

—Josiah Willard Gibbs

We now venture to apply the Schrödinger equation and the postulates of quantum mechanics to some simple

systems involving linear motion. We’ll start by considering the particle in a box in one dimension and then in

multiple dimensions. Importantly, we’ll see that Bohr’s assumptions regarding quantization of energy resulted

from confinement of particles, such as electrons within an atom, and that multiple dimensions causes degeneracy

among energy levels.

13.1 The Particle in a Box

The particle in a box is an example of a simple model that can be analyzed and discussed in great detail and

has physical consequences which carry over to more complicated systems. Although a general solution to the

wave function for a particle in a box will require some quantum mechanical postulates covered later, the model

will stand as a good introduction to these postulates as well as the need for using mathematical intuition for

solving problems in quantum mechanics.

We’ll consider the case of some particle of mass m constrained to an interval on the x-axis defined by

0 ≤ x ≤ L where L is some constant and is the size of the interval. Moreover, we’ll start by considering a free

particle, one in which there is no potential energy acting on the particle so that V (x) = 0 in the Hamiltonian

operator. Then, the Schrödinger equation can be rewritten as

− }2

2m

d2ψ(x)

dx2
= Eψ(x), 0 ≤ x ≤ L

for some wave function ψ(x) where the ordinary differential (as opposed to partial differential) is considered

186
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because we’re in one dimension. Following a little bit of algebraic gymnastics we arrive at

d2ψ

dx2
+

2mE

}2
ψ = 0 (13.1.1)

which is a second-order, linear ordinary differential equation, a solution of which is provided in Appendix ??.

Going through the motions, we find that a general solution to Equation (13.1.1) is given by

ψ(x) = c1e
i
√

2mE
} x + c2e

− i
√

2mE
} x (13.1.2)

Using Euler’s formula, eix = cosx+ i sinx, we can rewrite the equation above as

ψ(x) = c1 cos

(√
2mE

}
x

)
+ c2 sin

(√
2mE

}
x

)
(13.1.3)

which is what we commonly think of as representing some sort of wave. Many textbooks and references jump

right to asserting that an equation of the form of (13.1.3) solves the wave equation. Now, you can (sorta) see

where it comes from1.

At this point we can introduce boundary conditions to our particle. As described in the beginning we

require the particle to be restricted on some interval 0 ≤ x ≤ L so that ψ(0) = ψ(L) = 0 and ψ(x) = 0 for any

x outside of the described interval. Using these conditions in Equation (13.1.3),

ψ(0) = c1 cos (0) + c2 sin (0) = c1

implies that c1 = 0. Invoking the second condition and adopting c1 = 0,

ψ(L) = c2 sin

(√
2mE

}
L

)
= 0

This implies that L
√

2mE/} = nπ for any integer n = 1, 2, 3, . . . . This is an important result, for more than

one reason. As a brief aside, notice that we can rewrite the relation as

E =
n2π2}2

2mL2
=

n2h2

8mL2
, n = 1, 2, 3 . . . (13.1.4)

which are the quantized energy levels of the particle in a box. These are the only physically meaningful solutions

to the Schrödinger equation. Notice that quantization arises naturally from the boundary conditions, in contrast

to how they were introduced by Planck and Bohr in a manner that was just sorta guessing. In a series of papers

introducing the laws of quantum mechanics, Schrödinger introduced this relationship as follows:

I wish to show that the usual rules of quantization can be replaced by another postulate (the

Schrödinger equation) in which there occurs no mention of whole numbers. Instead, the introduction

of integers arises in the same natural way as, for example, in a vibrating string, for which the number

of nodes is integral. The new conception can be generalized, and I believe that it penetrates deeply

into the true nature of quantum rules.

Before moving on we can relate our intuition about the connection between classical and quantum me-

chanics to this result. In Equation (13.1.4), notice that the energy gaps decrease as either L increases or as m

increases. That is, the gap between allowed energies decreases as size of the box increases or as the mass of the

particle increases. The latter of these two results agrees with what we already know about classical mechanics:

the energy spectrum is continuous! The former of these two results provides another reason for quantization

as a result of confinement. If the particle was not at all confined, that is, L grows very large, the gap in the

1Like I hinted at briefly, refer to the Appendix for more discussion on solving second-order differential equations.
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allowed energies decreases2.

If that wasn’t enough there’s also another amazing result we can draw from this. Recall the de Broglie

relation, λ = h/p, for the momentum p of some particle. Also, notice that for a free particle (i.e., the one we’ve

been considering this whole time) the momentum is given by p =
√

2mE. Making this substitution into the

relation L
√

2mE/} = nπ,

nπ =
Lh

λ}

=
2Lπ

λ

λ =
2L

n
(13.1.5)

which are the normal modes of the wave function for a particle in a box. The wonderful part about solving

Schrödinger’s equation for this particle without making any large assumptions is that the derivation for a result

like Equation (13.1.5) becomes clear.

With the brief aside concluded, we can return to finding the wave function for the particle in a box. Using

the relationship L
√

2mE/} = nπ and c1 = 0 as we’ve already shown,

ψ(x) = c2 sin
(nπx
L

)
(13.1.6)

is our current result. To determine the constant c2 we’ll use the fact that all wave functions must be properly

normalized. That is,

∫ ∞

−∞
ψ∗(x)ψ(x)dx = 1

where ψ∗(x) represents the wave function’s complex conjugate. This postulate, sometimes referred to as the

Born rule, will be discussed in greater detail later. For now, though, we’ll just utilize the result. We can start by

trying to normalize Equation (13.1.6). Note that since the wave function does not have a complex component,

ψ∗(x) = ψ(x).

∫ ∞

−∞
c2 sin

(nπx
L

)
c2 sin

(nπx
L

)
dx = c22

∫ L

0

sin2
(nπx
L

)
dx

= c22

∫ L

0

(
1

2
− cos

(
2nπx

L

))
dx

= c22

[
1

2
x− L

2nπ
sin

(
2nπx

L

)]L

0

= c22

(
L

2

)

In order for this integral to evaluate to 1, we require c2 =
√

2/L and so our normalized wave function for a

particle in a box becomes

ψ(x) =

√
2

L
sin
(nπx
L

)
, 0 ≤ x ≤ L, n = 1, 2, 3, . . . (13.1.7)

If we instead had begun our analysis by asserting that the wave function must look something like a trig

function, and gone through the motions to arrive at Equation (13.1.7), we could also attain the energy of the

wave function for each mode using the Schrödinger equation, operating on ψ(x) via the Hamiltonian operator.

2If we allow L → ∞ we find that E → 0 in Equation (13.1.4). Clearly, this is untrue because quantum particles cannot have
zero energy. This is because the formula for the energy we derived here is for a particle confined to a box and the energy for an
unconfined particle is different. Though, it does provide some evidence for quantization being a product of confinement, regardless.
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Recall that in this case we are considering a free particle so that V (x) = 0 while 0 ≤ x ≤ L.

Ĥψ(x) =

{
− }2

2m

∂2

∂x2

}[√
2

L
sin
(nπx
L

)]

= − }2

2m

√
2

L

∂2

∂x2

[nπ
L

cos
(nπx
L

)]

= − }2

2m

√
2

L

(
−n

2π2

L2
sin
(nπx
L

))

=
}2n2π2

2mL2
ψ(x)

= Eψ(x)

and therefore E = h2n2/8mL2 as expected. This method of determining some physically relevant parameter

using an operator can be done using any other operator as well, such as the position or momentum operators.
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Figure 13.1: (A) The wave function of the first four energy levels of a particle in a box, with the corresponding
probability densities in (B).

Figure 13.1 illustrates the plots of the Equation (13.1.7) for the n = 1, 2, 3 and 4 energy levels and

the associated probability distributions. The horizontal dotted lines are the energy levels, given by Equation

(13.1.4). It is important to know how many states exist having the energy corresponding to a given level. For

example, how many states exist having the energy E3? For n = 3, there is only one wave function, ψ3(x), which

leads to this energy level. For the particle in a box, this is true for every energy level. Stated more fancily, we

say that each energy level is nondegenerate.

Degeneracy is an important topic as it relates energy levels of a system to one another as well as the wave
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function of the system. As noted above, a nondegenerate energy level is one that can only be represented by a

single wave function (you might also say that the energy level is singly degenerate or has a degeneracy of 1). In

contrast, if two or more eigenfunctions of a quantum mechanical system give the same value for some observable

of the system, say, energy, then the states are said to be degenerate. Mathematically, this is represented by

the Hamiltonian (keeping with the theme of energy) for the system having more than one linearly independent

eigenfunction with the same eigenvalue.

13.1.1 Zero Point Energy

As is illustrated in Figure 13.1 and as was probably mentioned by me sometime earlier, the lowest energy state

for a particle in a box is the n = 1 level, corresponding to an energy of E1 ≈ 0.38 eV. Unlike a classical particle

which may have a stationary state corresponding to E = 0, a quantum mechanical particle in a box cannot be

at rest. This would violate the uncertainty principle. Stated more technically, a confined particle cannot be at

rest.

Although the particle’s position and velocity are uncertain, the particle’s energy in each state can be

precisely determined. The distinction between an uncertain position and velocity is strange, however, it is a

natural consequence of a standing wave. In order to have a standing state at all, a particle must form a standing

wave which only occurs for very precise frequencies and thus precise energies.

13.1.2 Wave Function Symmetry and Orthogonality

Figure 13.1 illustrates the powerful result that ψ2(x) is symmetric about the center of the box. That is, the

particle is equally likely to be found in either half of the box. This agrees with our intuition; there’s no reason

for the particle to favor one side of the box over another. By the rules of symmetry (refer to Appendix ??)

then, we know that ψ must be either a symmetric or antisymmetric function. Also in Figure 13.1 are the wave

functions for each energy level; clearly, ψ1 and ψ3 are symmetric about the center of the box while ψ2 and ψ4

are antisymmetric.

These observations (along with a proof that I don’t care for) justify the following result: A nondegenerate

eigenfunction must be symmetric or antisymmetric under any invariant operator. By “invariant operator”

we mean one which does not change with some transformation of the system. An example of this would

the Hamiltonian operator under a transformation of coordinates; although the positions and momenta of each

particle would change in this case, the total energy and therefore total energy operator would remain unchanged.

Hence, Ĥ is considered invariant under a coordinate transformation.

Knowing stuff about the eigenfunctions of a system is great, especially when the wave functions are

considered on their own. We’ve already seen how the product of an eigenfunction and itself has a probabilistic

interpretation. This motivates us to consider an interpretation for the product of two wave functions which

represent different energy levels. That is, what does

∫ ∞

−∞
ψm(x)ψn(x)dx

mean? Conveniently, the requirement that all quantum mechanical operators must be Hermitian imposes

another restriction on the eigenfunctions of quantum mechanical operators such that this integral may be

evaluated with ease.

Consider the two eigenvalue equations,

Âψn = anψn & Âψm = amψm

where Â represents any of the quantum mechanical operators we are familiar with and ψi is some eigenfunction

for the system with a corresponding eigenvalue ai. Since ψm and ψn are an eigenfunctions of the system, we
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have that

∫ ∞

−∞
ψ∗mÂψndx =

∫ ∞

−∞
ψ∗manψndx = an

∫ ∞

−∞
ψ∗mψndx (13.1.8)

similar to result of postulate 4. Since Â is a Hermitian operator we can also write

∫ ∞

−∞
ψnÂ

∗ψ∗mdx =

[∫ ∞

−∞
ψ∗nÂψmdx

]∗
=

[∫ ∞

−∞
ψ∗namψmdx

]∗
= a∗m

∫ ∞

−∞
ψ∗mψndx (13.1.9)

by Equation (12.3.6) for the definition of a Hermitian operator. Subtracting Equations (13.1.8) and (13.1.9)

affords

∫ ∞

−∞
ψ∗mÂψndx−

∫ ∞

−∞
ψnÂ

∗ψ∗mdx = (an − a∗m)

∫ ∞

−∞
ψ∗mψndx = 0 (13.1.10)

with equality to zero at the end by the definition of a Hermitian matrix, given in Equation (12.3.7).

At this point we have two possibilities to consider, either n = m or n 6= m. If n = m, the integral in

Equation (13.1.10) must evaluate to 1 by normalization and therefore an = a∗m. This is simply a proof that the

eigenvalues of a Hermitian transformation are real! If n 6= m, it must be the case that

∫ ∞

−∞
ψ∗mψndx = 0, n 6= m (13.1.11)

Thus, we’ve proved that the eigenfunctions for a Hermitian operator are orthogonal for a nondegenerate system.

For the particle in a box, this guarantees that any integral of the form in Equation (13.1.11) with n 6= m

goes to zero and therefore all energy states are nondegenerate. Conversely, since all of our solutions to the

eigenfunctions for a particle in a box are nondegenerate, they form an orthogonal set. Moreover, since we’ve

properly normalized all wave functions in this set, they form an orthonormal set.

To get an idea of how this helps us determine properties of some physical systems we’ll run through an

example. Suppose we have a particle in a box that can be described similarly to how we’ve done so far, with

mass m in a box of length L. The wave function for this particle is given by

ψ(x, t) =

√
2

L
sin
(nπx
L

)
, 0 < x < L

Suppose that at time t = 0 the particle can be described by a superposition of wave functions with each in a

different energy state,

ψ(x, 0) =
1

2
φ1(x) +

√
3

2
φ3(x) (13.1.12)

where φj(x) is the wave function for a particle in the n = j energy level. If we sample 106 identically prepared

systems with the same wave functions (described above), what is the average value of the energy measured? To

determine the average energy we’ll first make some observations about how coefficients of φ1 and φ3. Suppose

that we did not know the coefficients in Equation (13.1.12) and tried to determine the total energy of the

system:

Ĥψ = Ĥ (c1φ1 + c3φ3) = c1Ĥφ1 + c3Ĥφ3 = c1E1φ1 + c3E3φ3 = Eψ

Here, c1 and c3 are taking the place of 1/2 and
√

3/2 for the time being. Now, we see that the total energy

of the system must be E = c1E1 + c3E3. Continuing to suspend reality and pretending that we did not know

c1 and c3, we could determine them by using the postulates of quantum mechanics. Since |ψ(x)|2 defines a



192 CHAPTER 13. QUANTUM MECHANICAL MODELS OF TRANSLATIONAL MOTION

probability distribution,

∫ ∞

−∞
|ψ(x)|2dx =

∫ ∞

−∞
(c1φ1 + c3φ3)

2
dx

1 =

∫ ∞

−∞
c21φ

2
1 + 2c1c3φ1φ3 + c23φ

2
3dx

=

∫ ∞

−∞
c21φ

2
1 + c23φ

2
3dx

= c21

∫ ∞

−∞
φ2

1dx+ c23

∫ ∞

−∞
φ2

3dx

1 = c21 + c23 (13.1.13)

In the second and final lines we took advantage of the fact that all of the wave functions are normalized so

that integrating their squares evaluates to one. In the third line we took advantage of the orthogonality of

eigenfunctions. Thus, we see that the coefficients of the eigenfunctions in a superposition must be normalized.

More generally, we could say that for a wave function composed of n eigenfunctions,

ψ(x) =

n∑

i=1

ciφi(x), 1 =

n∑

i=1

c2i (13.1.14)

Awesome! That didn’t answer our question about energy though. Recall that the average value of an observable

is given by

〈a〉 =

∫ ∞

−∞
ψ∗(x)Âψ(x)dx

for a normalized wave function ψ(x) and operator Â with corresponding observable a. Using the Hamiltonian

and substituting Equation (13.1.12) maintaining the use of c1 and c2, we have that the average energy of a

system is

〈E〉 =

∫ ∞

−∞
(c1φ1 + c3φ3)Ĥ(c1φ1 + c3φ3)dx =

∫ ∞

−∞
(c1φ1 + c3φ3)

(
c1Ĥφ1 + c3Ĥφ3

)
dx

=

∫ ∞

−∞
(c1φ1 + c3φ3) (c1E1φ1 + c3E3φ3) dx

=

∫ ∞

−∞

(
c21E1φ

2
1 + 2c1c3E1E3φ1φ3 + c23E3φ

2
3

)
dx

=

∫ ∞

−∞
c21E1φ

2
1dx+

∫ ∞

−∞
c23E3φ

2
3dx

〈E〉 = c21E1 + c23E3 (13.1.15)

Thus, we find that the average energy is not simply a linear combination of the energies using the coefficients

of the wave functions; by the postulate of quantum mechanics regarding average values, we see that we gotta

square those coefficients to get the total energy. Notice that at no point in finding Equation (13.1.15) did we

make any moves specific to the Hamiltonian operator. So, we could generalize this result to any operator:

〈a〉 =

n∑

i=1

c2i ai (13.1.16)

Above, a is some observable and ci is the coefficient of an eigenfunction of the wave function, as described

earlier. Finally, we can derive the average energy of the system initially described. Recall that the energy of a

particle in a box with a wave function of principle quantum number n is given by En = h2n2/8mL2. So, the
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total energy of our wave function is at time t = 0 is

〈E〉 =

(
1

2

)2

E1 +

(√
3

2

)2

E3

=
1

4

(
h2(1)2

8mL2

)
+

3

4

(
h2(3)2

8mL2

)

=
7h2

8mL2

Lastly, suppose that we ran this exact experiment a second time, this time 20 minutes later at t = 1200.

What is the average value of the energy at that point? Clearly, the it will be the same since energy is a

conserved quantity.

13.1.3 The Particle Outside of a Box

The particle outside of a box is just another way of saying an unconfined particle. We can start the same we

did in dealing with a particle in a box, assuming that the particle has some mass m and that it’s a free particle

so that it experiences no potential energy. The Schrödinger equation becomes

Ĥψ(x) = − }2

2m

∂2

∂x2
ψ(x) = Eψ(x)

for a wave function ψ(x) which describes the particle. Earlier in Section 13.1 we saw that the general solution

to this equation was

ψ(x) = c1e
i
√

2mE
} + c2e

−i
√

2mE
}

Unlike in the case of a particle confined to a box, however, there are no boundary conditions on a particle

outside of a box. Hence, there are no restrictions on the allowed values of the energy and therefore the energy

is not quantized. Hence, quantization is a result of confinement. I think I mentioned that earlier but it’s

important so thought I’d reiterate it.

13.1.4 Pi Electrons in a Conjugated System

Absorption of light in the visible or ultraviolet portion of the electromagnetic spectrum results in electron

excitation from lower-energy occupied orbitals to higher-energy unoccupied orbitals. The subsequent relaxation

of electrons back into their lower lying states causes light emission. Conjugated systems allow for electron

delocalization; the greater the degree of delocalization the more the absorption maximum is red-shifted (that

is, the frequency required for absorption is decreased). The energy levels for such linearly conjugated systems

is described quite well by the particle in a box model.

Simple Linearly Conjugated Systems

Suppose we consider the series of linearly conjugated systems involving butadiene, hexatriene, and octate-

traene, that is, the alkenes with two, three, and four π bonds, respectively. The wavelength of maximum

absorption, λmax, for each of these is 217 nm, 268 nm, and 304 nm, respectively. All of these quantities can be

computed experimentally using a UV/Vis spectrometer. Using these values, how can we estimate the length of

any one of these molecules?

We’ll do this by modeling the electrons within the conjugated systems as particles in a box and assume

that they won’t leave the system so that the box has infinitely high walls. The energy levels for this sort of

system has been determined already and is given by En = h2n2/8mL2 for some principle quantum number

n and box length L. Also, we’ve found that the difference between two energy levels can be written as
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∆En1→n2
= h2

8mL2 (n2
2 − n2

1). In this instance we’re interested in trying to find the length of the “box” so that

we’ll rewrite this expression as

L =

√
h2(n2

2 − n2
1)

8m∆E
, n2 > n1 (13.1.17)

where the particle is excited from the n1 to the n2 level. With the wavelengths of maximum absorption we can

compute the change in energy between energy levels for each system Planck’s relation, ∆E = hc/λmax. So, all

that’s left is to determine the ground state energy levels and first excited state levels. For butadiene, with two

π bonds there are four π electrons. Since two electrons occupy each energy level (the Pauli Exclusion Principle)

the lowest lying energy level is n = 2. Similar arguments can be made for hexatriene and octatetraene which

have lowest lying energy levels of n = 3 and n = 4, respectively. The first excited state energy levels for all of

these is simply n+ 1. Using butadiene as an example, the length of the conjugated system can be estimated as

LC4H6 =

√
h2(n2

2 − n2
1)

8m(hc/λmax)
=

√
h(n2

2 − n2
1)λmax

8mc

=

√
(6.626× 10−34 J s)(32 − 22)(217 nm)

8(9.109× 10−31 kg)(2.998× 108 m/s)

= 5.736�A

The calculated lengths of butadiene, hexatriene, and octatetraene are reported in Table 13.1. Although rough,

the particle in a box model provides a fair estimate for the length of the conjugated molecule. Most importantly,

this model correctly predicts that the length of the chain will increase as conjugation increases.

Alkene Estimated Length (�A) Calculated Length (�A)

Butadiene 5.736 4.130
Hexatriene 7.543 6.922
Octatetraene 9.109 9.714

Table 13.1: Estimated molecule lengths using particle in a box model versus calculated lengths from the
literature. C––C and C–C bond lengths taken from Craig, et. al.

Cyanines: A Case Study

From the perspective of more formalized quantum mechanics, we can think of the resonance forms of a con-

jugated system as being a superposition of wave functions, each of which represents a resonance form. For

example, butadiene has two resonance structures which contribute largely to conjugation so that the wave

function for the an electron in the π system can be written as

Ψ =
1√
2
ψ1 +

1√
2
ψ2

where the factors of 1/
√

2 indicate equal contributions from both resonance structures. Each carbon atom in

this linear chain is involved in bonding with three atoms by three localized bonds (i.e., σ bonds). The rest of

the valence electrons on each atom form the mobile cloud of π electrons above the chain which we recognize as

the resonance structures for the molecule.

Using this idea, we’ll delve deeper into conjugation and absorption spectroscopy using cyanines, synthetic

dyes belonging to the polymethine group, as an example. Cyanines are a family of linearly conjugated chains

with nitrogen atoms on both ends of the molecule, within in a heterocyclic ring. For any cyanine, we can denote

the number of carbon atoms in the chain as p. See Figure 13.2 for an example structure.
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Figure 13.2: Structure of cryptocyanine. The number of carbon atoms in this linearly conjugated chain is p = 9.

Since the Pauli exclusion principle limits the number of electrons in any given energy level to two (+1/2

and −1/2), the ground state of a molecule with N π electrons will have the N/2 lowest levels filled (for even

N) and all higher levels empty. When the molecule absorbs light, an electron in the highest filled energy level

(n1 = N/2) jumps to the lowest unfilled level (n2 = N/2 + 1), so that the change in energy for this transition

becomes

∆E =
h2

8mL2
(n2

2 − n2
1) =

h2

8mL2

(
N2

4
− N2

4
+N + 1

)
=

h2

8mL2
(N + 1) (13.1.18)

For an electron, the change in energy can be rewritten as ∆E = hν = hc/λ for incident light of frequency

ν and wavelength λ. This allows us to rewrite Equation (13.1.18) as

hc

λ
=

h2

8mL2
(N + 1) ⇒ λ =

8mc

h

(
L2

N + 1

)
(13.1.19)

For a polymethine chain, the number of π electrons is given by N = p+3 where p is the number of carbon

atoms in the chain (as mentioned previously) and the addend of 3 is due to the bonding with nitrogen atoms

on either end of the polymethine chain. The length of a chain is then given by L = (p+ 3)l for a bond length

l between atoms. Using Equation (13.1.18), we see that

λ (nm) =
8mc

h

(
L2

N + 1

)
=

8mcl2

h

(p+ 3)2

p+ 4
≈ 63.7

(p+ 3)2

p+ 4
(13.1.20)

where the estimate is for l = 1.39�A, the bond length between carbon atoms in benzene.

If there are easily polarizable groups at the end of the polymethine chain, such as benzene, the potential

energy of the π in the chain does not rise as sharply at the end, effectively lengthening the path L, so we can

write

λ (nm) ≈ 63.7
(p+ 3 + α)2

p+ 4
(13.1.21)

where α is a constant between 0 and 1.

13.2 The Particle in a 3-Dimensional Box

The particle in a three-dimensional box is conceptually similar to the particle in a one-dimensional box. The only

difference is in the number of dimensions we have to consider. Recall that the three-dimensional Schrödinger

equation is given by

− }2

2m
∇2ψ(x, y, z) + V (x, y, z)ψ(x, y, z) = Eψ(x, y, z)
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where ∇2 is the Laplacian operator. If we suppose that some particle of mass m is confined to a box of defined

on the intervals 0 < x < a, 0 < y < b, and 0 < z < c where the potential energy inside the box is V (x, y, z) = 0,

the Schrödinger equation can be rewritten as

− }2

2m
∇2ψ(x, y, z) = Eψ(x, y, z)

− }2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ(x, y, z) = Eψ(x, y, z), 0 < x < a, 0 < y < b, 0 < z < c (13.2.1)

Notice that we can separate the total energy operator into three components, each representing the energy in

that respective direction. That is, Equation (13.2.1) can be rewritten as

(
Ĥx + Ĥy + Ĥz

)
ψ(x, y, z) = Eψ(x, y, z) (13.2.2)

Whenever this sort of separation of variables is possible, we can rewrite the wave function ψ(x, y, z) as a product

of wave functions in each direction. So, we can write ψ(x, y, z) = X (x)Y(y)Z(z) where X (x), Y(y), and Z(z)

are the wave functions in the x-, y-, and z-directions, respectively. Now, after some algebraic gymnastics, we

can rewrite Equation (13.2.2) as

(
Ĥx + Ĥy + Ĥz

)
ψ(x, y, z) = Eψ(x, y, z)

(
Ĥx + Ĥy + Ĥz

)
X (x)Y(y)Z(z) = EX (x)Y(y)Z(z)

YZĤxX + XZĤyY + XYĤzZ =

ĤxX
X +

ĤyY
Y +

ĤzZ
Z = E (13.2.3)

In the second to last step we divided the expression through by XYZ. Equation (13.2.3) illustrates the fact

that we can solve the three-dimensional particle in a box problem by solving three one-dimensional particle

in a box problems instead. If we consider some change in the system in the x-direction, clearly the y and z

components of the wave function (Y(y) and Z(z), respectively) do not change and so we’re left with

ĤxX
X + (constant) + (constant) = E

which shows us that even though the variable x is changing, the expression ĤxX/X does not change since the

total energy of the system E is constant by the conservation of energy. Let’s say that the energy contribution

from the x component of the wave function is some constant Ex so that ĤxX/X = Ex. We can make analogous

arguments for the y and z components of the wave function so that we’re left with a system of three equations,

ĤxX
X = Ex,

ĤyY
Y = Ey,

ĤzZ
Z = Ez (13.2.4)

where the total energy E = Ex + Ey + Ez of the system is the sum of the energy contributions from each

direction. Considering any one of the three expressions in Equation (13.2.4) (I chose the x component) reveals

the eigenvalue equation ĤxX = ExX which is exactly the one-dimensional particle in a box problem. Recalling

our solution to this problem from Equation (13.1.7) as well as the energy associated with the particle in a box
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from Equation (13.1.4), the x, y, and z components of the three-dimensional particle in a box are solved by

X (x) =

√
2

a
sin
(nxπx

a

)
, Enx =

h2n2
x

8ma2
, 0 < x < a

Y(y) =

√
2

b
sin
(nyπy

b

)
, Eny =

h2n2
y

8mb2
, 0 < y < b

Z(z) =

√
2

c
sin
(nzπz

c

)
, Enz =

h2n2
z

8mc2
, 0 < z < c

Recall that we began by asserting separability in the wave function so that ψ(x, y, z) = X (x)Y(y)Z(z). Also,

we defined the total energy to be a sum of the directional energies, E = Ex+Ey +Ez. Thus, the wave function

of a three-dimensional particle in a box and the associated energy is given by

ψ(x, y, z) =

√
8

abc
sin
(nxπx

a

)
sin
(nyπy

b

)
sin
(nzπz

c

)
, 0 < x < a, 0 < y < b, 0 < z < c (13.2.5)

Enx,ny,nz =
h2

8m

(
n2
x

a2
+
n2
y

b2
+
n2
z

c2

)
, nx, ny, nz ∈ {1, 2, 3 . . . } (13.2.6)

Figure ?? illustrates the wave functions for the three-dimensional particle in a box for different combinations

of quantum numbers nx, ny, and nz.

13.2.1 The Particle in a Cube

A cubical version of the particle in a box is useful for a further understanding of behavior of energy levels in

the particle in a box. Here, we’ll consider boxes where the lengths of the intervals in each of the x, y, and z

directions is the same so that a = b = c = L, using the definitions for a, b, and c as in the previous section.

Then, our solution to the wave function for the three-dimensional particle in a box becomes

ψ(x, y, z) =

√
8

L3
sin
(nxπx

L

)
sin
(nyπy

L

)
sin
(nzπz

L

)

Enx,ny,nz =
h2

8mL2

(
n2
x + n2

y + n2
z

)

The lowest allowed energy levels for any of nx and ny or nz is 1 so that the lowest allowed energy (the zero-point

energy) of the wave function is E1,1,1 = 3h2/8mL2. The next lowest energy comes from allowing any one of

nx, ny, or nz to be 2, corresponding to an energy of E2,1,1 = E1,2,1 = E1,1,2 = 6h2/8mL2. Notice that allowing

nx = 2 and ny = nz = 1 produces a different wave function than allowing ny = 2 and nx = nz = 1 yet both

combinations produce the same energy. Thus, the second energy levels for a three dimensional particle in a box

is triply degenerate because three independent eigenfunctions produces the same energy.

13.2.2 Planck’s Derivation for Blackbody Radiation

Blackbody radiation is a topic covered in Section 10.3, within the introduction to transitioning from classical

to quantum physics. The derivation for this equation, however, requires some knowledge of wave mechanics

and the quantum shenanigans that photons enjoy. So, the derivation is covered here (after we’ve learned about

these quantum shenanigans) instead of earlier.

An important preface to this section is the fact that at the time of derivation, Planck was most likely

unaware of the Rayleigh-Jeans law, that is, the distribution of the spectral density of a blackbody based on

classical physics. Instead of working from this expression, then, he based his effort on Wien’s law, given as

ρ(ν, T ) = αν3e−βν/T (13.2.7)
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for some constants α and β.3 Equation (13.2.7) was supported experimentally for light within the visible

spectrum and temperatures up to 4000 K, though, at lower frequencies it failed to correctly predict the behavior

of blackbody radiation, as we can see in Figure 13.3.
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Figure 13.3: Models of blackbody radiation. The spectral density of a blackbody is plotted against frequency
for the classical model (i.e., the ultraviolet catastrophe), Planck’s model, and Wien’s model.

Planck started with three important experimental results: (1) Wien’s law was correct for large enough

frequencies, (2) Wien’s displacement law was in general correct, and (3) at small enough frequencies, the

radiation density of a blackbody is proportional to T . Using these results and the ideas of statistical mechanics

from Boltzmann, his initial attempts to derive a blackbody radiation were based on the entropy that could be

defined for such radiation. In particular, he was tasked with deriving an entropy for the waves of frequency ν,

then multiplying by the number of waves of frequency ν per unit frequency per unit volume. This latter factor

is the number of normal modes of the radiation, and requires a quantum mechanical interpretation to solve for.

The derivation can be broken down into two parts. Firstly, determination of the average energy among

all the waves radiated from the blackbody and relating this energy to entropy using ideas from statistical

mechanics. Secondly, we’ll use newfound knowledge of the quantum mechanical models of translational motion

to determine the behavior of this radiation to relate the average energy to the total energy of the system.

The Statistical Mechanical Basis

Recall from statistical mechanics the Boltzmann equation. For N identical systems (in our case N is the number

of copies of a particular radiation wave) we have that the entropy is given by

S =
kB

N
lnW (13.2.8)

for the number of microstates W of the system. Among these N waves, there must be a total amount of

energy E = N 〈E〉 for the average energy of a single system 〈E〉 by definition of the average. Keeping in the

theme of Boltzmann, Planck next assumed that energy could be discretized for the purposes of counting with

an intention of taking a limit at the end of the calculation. For a discrete quantum of energy ε, the number of

3Note that Wein’s law and Wein’s displacement law are two different equations.
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ways to distribute P = E/ε elements of energy among N waves becomes4

W =

(
P +N − 1

P

)
=

(P +N − 1)!

P !(N − 1)!

Determining the logarithm of this expression for Equation (13.2.8) can be done by Stirling’s Approximation,

lnn! = n lnn− n. So, ignoring the factor of 1 because it is negligible compared to the magnitudes of P and N ,

we have that

S =
kB

N
lnW

=
kB

N

[
ln

(
(P +N)!

P !N !

)]

=
kB

N
[ln(P +N)!− lnP !− lnN !]

≈ kB

N
[(P +N) ln(P +N)− (P +N)− P lnP + P −N lnN +N ]

=
kB

N
[(P +N) ln(P +N)− P lnP −N lnN ]

= kB

[(
P

N
+ 1

)
ln(P +N)− P

N
lnP − lnN

]

= kB

[( 〈E〉
ε

+ 1

)
ln

[
N

( 〈E〉
ε

+ 1

)]
− 〈E〉

ε
ln

(
N
〈E〉
ε

)
− lnN

]

= kB

[( 〈E〉
ε

+ 1

)
ln

( 〈E〉
ε

+ 1

)
+

( 〈E〉
ε

+ 1

)
lnN − 〈E〉

ε
ln

(
N
〈E〉
ε

)
− lnN

]

= kB

[( 〈E〉
ε

+ 1

)
ln

( 〈E〉
ε

+ 1

)
+
〈E〉
ε

lnN + lnN − 〈E〉
ε

ln

( 〈E〉
ε

)
−〈E〉

ε
lnN − lnN

]

= kB

[( 〈E〉
ε

+ 1

)
ln

( 〈E〉
ε

+ 1

)
− 〈E〉

ε
ln
〈E〉
ε

]

The seventh line above takes advantage of the relationship PN = 〈E〉 /ε. At this point, we can take the

derivative of this expression with respect to the average energy to find that

dS

d 〈E〉 = kB
d

d 〈E〉

[( 〈E〉
ε

+ 1

)
ln

( 〈E〉
ε

+ 1

)
− 〈E〉

ε
ln
〈E〉
ε

]

= kB

[
1

ε
ln

( 〈E〉
ε

+ 1

)
+

( 〈E〉
ε

+ 1

) 1
ε

〈E〉
ε + 1

−
(

1

ε
ln
〈E〉
ε

+
〈E〉
ε

1
ε
〈E〉
ε

)]

= kB

[
1

ε
ln

( 〈E〉
ε

+ 1

)
+

1

ε
−
(

1

ε
ln
〈E〉
ε

+
1

ε

)]

=
kB

ε

[
ln

( 〈E〉
ε

+ 1

)
− ln

〈E〉
ε

]
(13.2.9)

Taking a brief detour, we can relate the derivative of the entropy with respect to energy in an alternate fashion

using thermodynamics. Using the first law, and assuming that radiation is not performing any work, we have

that

dE = dq + dw = TdS + PdV ⇒ dS

dE
=

1

T
(13.2.10)

which allows us to relate Equation (13.2.9) to the reciprocal of the temperature as

kB

ε

[
ln

( 〈E〉
ε

+ 1

)
− ln

〈E〉
ε

]
=

1

T

4Counting the number of ways to do this is analogous to the balls in boxes or stars and bars problem commonly encountered
in combinatorics.



200 CHAPTER 13. QUANTUM MECHANICAL MODELS OF TRANSLATIONAL MOTION

affording an expression for the average energy, after some algebraic gymnastics, as

〈E(ν)〉 =
ε

eε/kBT − 1
(13.2.11)

Note that this is the average energy, and to determine the total energy we first must find the number

of copies N of a particular wave, defined previously. This equates to counting the number of possible normal

modes of a wave at a given frequency within a given region of space.

The Quantum Mechanical Interpretation

Within our discussion of the one-dimensional particle in a box, we found that the normal modes of the wave

function for a particular confined to box, given in Equation (13.1.5), is written as λ = 2L/n. This equation

implies that only light waves of certain frequencies can exist in the box, namely, those with a frequency which

satisfy

ν =
nc

2L
, n = 1, 2, 3... (13.2.12)

From this equation, we see immediately that the density of waves per frequency and per volume is given by

differentiating the principle quantum number n by the frequency ν:

dn

dν
=

2L

c
(13.2.13)

In three dimensions, as is the case of our radiating blackbody, finding the density of radiation per frequency

per volume follows a similar procedure, granted, is slightly trickier. In Section 13.2.1 above we found that our

“new” principle quantum number is the sum of each quantum number in quadrature such that the three-

dimensional analog to Equation (13.2.12) can be written

ν =
c

2L

√
n2
x + n2

y + n2
z, n = 1, 2, 3... (13.2.14)

This equation can also be thought of as defining a sphere of radius R = 2Lν/c for which all triples (nx, ny, nz)

lie inside. Written in set notation, this sphere Sn would look like

Sn =

{
(nx, ny, nz) : n2

x + n2
y + n2

z ≤
(

2Lν

c

)2
}

Hence, the volume enclosed by all triples (nx, ny, nz) which satisfy the inequality can be found using the radius

above and the general equation for the volume of a sphere. However, note that we are constrained by the

physicality of the situation, and all nx, ny, and nz, are positive so that we’re interested in only a single octant

of space, forcing us to divide this total volume by 8. Hence, the number of waves with a frequency between ν

and ν + dν within a given region of space is given by

Ntotal(ν) =
1

8

4π

3

(
2Lν

c

)3

=
4πν3L3

3c3

To get the density with respect to space (per volume), divide by the total volume L3. To get the density with

respect to frequency, differentiate the total number of waves by the frequency. Lastly, to take into account the

transverse nature of the waves, i.e., two independent polarizations, multiply the result by two:

Ndense(ν) =
2

L3

d

dν
Ntotal =

2

L3

d

dν

[
4πν3L3

3c3

]
=

8πν2

c3
(13.2.15)

Finally, we have all of the necessary information to compute the energy distribution of blackbody radiation.

Recall that the we defined the total energy in terms of the average energy as E = N 〈E〉 so that our final result,
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using Equations (13.2.11) and (13.2.15), becomes

E(ν) =
8πν2

c3
ε

eε/kBT − 1
(13.2.16)

in agreement with Planck’s original result. The differences between this result and Equation (10.3.2) arise from

that the fact that we’re using ε as a quantum of energy instead of something more physically relevant. If we

substitute ε = hν using Planck’s equation, our result agrees nicely with that postulated before.

13.3 The Particle in a Finite Depth Box

The particle in a box model can be used to explore concepts such as why core electrons are not involved in

chemical bonds, the stabilizing effect of delocalized π electrons in aromatic molecules, and the ability of metals

to conduct electrons. Before applying the model to more “real world” scenarios, though, it must be modified to

be made more realistic. This is done by letting the box have a finite depth, allowing particles to escape similar

to how we might think of ionization or delocalization.

Suppose that we take the model of a particle in a box that we’ve been considering so far for a box of

width L. For −L/2 < x < L/2, the potential energy of the system is V (x) = 0. For x < −L/2 and L/2 < x,

instead of allowing V (x) = ∞ we instead adopt the convention V (x) = V0 so that if the particle has enough

energy it may escape the box. We can divide the system into three regions, each with their own wave function

ψ(x),

Region 1 V (x) = V0 for x < −L/2
Region 2 V (x) = 0 for − L/2 < x < L/2

Region 3 V (x) = V0 for L/2 < x

where the center of the box is located equidistant from each end. As before, in region 2 where V (x) = 0 we have

that the wave function must be ψ2(x) = A sin(nπx/L) for some amplitude A. Notice that we can rewrite the

scaling term inside the sine function using the relationship En = h2n2/8mL2 for the energies of a particle in a

box, the de Broglie relation, and the momentum of a particle in a region of zero potential energy, p =
√

2mE:

nπx

L
= πx

(√
8mEn
h2

)
= πx

(
2
√

2mEn
h

)
= πx

(
2p

h

)
=

2πx

λ
(13.3.1)

Now, the wave function for the particle in a box in a region of zero potential can be written as ψ2(x) =

A sin(2πx/λ). In regions of potential V = V0 the total kinetic energy of the particle is expressed as T = E−V0

and therefore the wavelength of the particle will be greater than if the potential were zero, since energy is

inversely proportional to wavelength. This implies that we require a longer-wavelength sinusoid for x < −L/2
and L/2 < x be smoothly connected to a shorter-wavelength sinusoid for −L/2 < x < L/2. In other words, the

wave functions in all regions must be continuous and differentiable at the boundaries x = ±L/2. Although the

wavelengths are determined by the difference in energy E−V0, the amplitude of the waves outside of the “box”

is free to change. This degree of freedom is always enough to allow a smooth joining of waves. Moreover, since

a particle can posses any energy greater than the potential outside of the box V0, when it escapes the box its

energies are no longer quantized. Such unquantized states are referred to as continuum states.

Of brief note is the coefficient on x, 2π/λ. Notice that we may define a new constant with a relationship

to the energy of the system as

η =
λ

2π
=

h

2πp
=

}√
2m(V0 − E)

(13.3.2)

It may be shown that η has units of meters and is referred to as the penetration distance. Interestingly, this
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relation reveals that even for incredibly small energies E, particles penetrate into the classically forbidden

region. Because of wave-particle duality, an atomic particle is “fuzzy” with no well-defined edge. Moreover,

the penetration distance increases as E is allowed to increase.

Now we turn our attention to regions of nonzero potential energy. We can apply de Broglie’s relationship

λ = h/p = h/
√

2m(E − V0) to express the wavelength of the particle at any point in space as a function of its

energy, since V0 is constant. Assuming that the particle remains in the box and its total energy is less than

that capable of escaping the box, E < V0 and the wavelengths are imaginary. Another consequence of this is

that the kinetic energy is less than zero and therefore the momentum of the particle is imaginary too. This

region is referred to as the classically forbidden region.

Recall that in Equation (13.1.2) we expressed solutions to the particle in a box with imaginary exponentials

through Euler’s formula. Here we’ll take a similar approach to write solutions to the wave function of a particle

in regions of nonzero potential as

ψ1(x) = Ae
2πi
λ1
x +Be−

2πi
λ1
x, ψ3(x) = Fe

2πi
λ3
x +Ge−

2πi
λ3
x

where ψ1(x) and ψ3(x) represent wave functions in regions 1 and 3, respectively, and A, B, F , and G are some

constants dependent on the energy of the system. In region 1 where x < −L/2, in order for ψ∗1(x)ψ1(x) to be

integrable as x → −∞ it must be the case that B = 0. Similarly for ψ3(x) where x > L/2 we require F = 0

in order to evaluate the behavior of the wave function as x→∞. So, the wave functions in all regions may be

expressed as

ψ1(x) = Ae
2πi
λ1
x, ψ2(x) = C sin

(
2πx

λ2

)
, ψ3(x) = Ge−

2πi
λ3
x

Now we must join the expression at the boundaries x = ±L/2, that is, determine the value of the

coefficients which make the wave functions at the border of each region smooth and continuous. By symmetry,

the process of determining the coefficients will be the same whether we consider the boundary between regions

1 and 2 or 2 and 3. I’ll proceed with the analysis by considering the boundary of regions 2 and 3. We require

that

C sin

(
2π(L/2)

λ2

)
= Ge−

2πi
λ3

(L/2) (13.3.3)

by continuity. We also require that

∂

∂x

[
C sin

(
2πx

λ2

)]
=

∂

∂x

[
Ge−

2πi
λ3
x
]
⇒ 2πC

λ2
cos

(
2πx

λ2

)
= −2πiG

λ3
e−

2πi
λ3
x (13.3.4)

in order for the wave functions to form a smooth function. We can substitute our expression from Equation

(13.3.3) into (13.3.4) to obtain

2πC

λ2
cos

(
2π(L/2)

λ2

)
= −2πiC

λ3
sin

(
2π(L/2)

λ2

)

which affords the condition

tan

(
2π(L/2)

λ2

)
=
iλ3

λ2



13.3. THE PARTICLE IN A FINITE DEPTH BOX 203

Finally, using the de Broglie relation for λ2 = h/
√

2mE and λ3 = h/
√

2m(E − V0) we see that

tan

(
2π(L/2)

h/
√

2mE

)
=
ih/
√

2m(E − V0)

h/
√

2mE

=
i
√
E√

E − V0

=
i2
√
E√

V0 − E

tan

(
2π(L/2)

√
2mE

h

)
= −

√
E√

V0 − E
(13.3.5)

where the only unknown is the total energy E. In the second to last line I took advantage of the fact that

from the beginning we assumed that E < V0 which allowed us to get rid of the imaginary unit i. For given

values of L, m, and V0 only certain energies E < V0 will satisfy Equation (13.3.5). Solutions to this equation

are displayed in Figure 13.4.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Energy (J) ×10−19

− tan
(

2π(L/2)
√

2mE
h

)

√
E√

V0−E

Figure 13.4: Graphical solutions to the allowed energies of a particle in a finite depth box. In blue is the
tangent expression from Equation (13.3.5) and in red is the other side of the equation. Values for the relevant
parameters are L = 2.50 nm, m = 9.11× 10−31 kg, and V0 = 1 eV.

In words, when we join the wave function of the particle trapped in the box to the wave function when it

is in a region where E < V0, there are only a few energies where the sinusoid of region 2 and the exponential

of region 3 have the appropriate behavior at x = L/2. This implies that the allowed energies are quantized

whenever E < V0, i.e., for a classically trapped particle. The surprising result we’ve shown, however, is that

quantum mechanics predicts a nonzero probability of finding the particle to the right of the barrier beyond

x = L/2 (and also to the left of the barrier at x = −L/2).

In the case of the infinitely deep well where V = ∞ outside of the box, solutions could be thought of as

fitting an integral number of sine waves into a fixed width, hence energy quantization. Since most wavelengths

do not fit inside the fixed width most energies are not allowed. In the case of a finite well, wave functions

are allowed to leak past the barrier yet we still see energy quantization because not all solutions to the wave

function on both sides of the barrier behave appropriately at the barrier. For some arbitrarily chosen total

energy of a system E, the wave function in all regions of space depends on E. We can draw the wave functions
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at any point in space as well, however, only certain values of E guarantee that the sinusoid within a region of

zero potential forms a smooth junction with the decaying exponential of a region of nonzero potential.

There are two important differences between the infinitely deep well and the finitely deep well:

1. There are a finite number of bound levels in a finitely deep well which depend on the energy of the system.

That is, the energy of the particle in a box remains quantized whether the box is infinitely deep or not.

2. The wave function at the edge of the box does not go to zero and instead extends into the classically

forbidden region. The extent of penetration is dependent on the energy of the system and increases with

increasing energy.

13.3.1 Two Finite Depth Boxes Interacting Through a Barrier

Oftentimes in chemistry and biology we consider molecules or systems which can have any one of several stable

configurations. A simple example would be the geometry of ammonia, which prefers a trigonal pyramidal

configuration. This geometry can be reached by one of two equivalent configurations: if the central axis of the

molecule is located along the z-axis, the three hydrogen atoms can lie either below or above the xy-plane, with

the lone pair on nitrogen lying to the other side. Both geometries are the most stable configuration yet there is

a relatively large energy barrier between the configurations due to steric and electronic repulsion. Similarly, we

might also cite Berry pseudorotation as an example. In this case, two stable trigonal bipyramidal geometries

are separated by a high-energy planar intermediate.

In the classical mechanical treatment of two boxes separated by an energy barrier we would solve for the

trajectory of a system trapped in one of any of the stable configurations and assert that the solution is the

same for all other stable configurations and that solutions in one region are independent of solutions in another.

That is, if a system exists in one stable configuration, it neither knows about nor would care about any other

stable configurations. However, due to barrier penetration, the solutions to quantum mechanical systems are

effected by the presence of equally stable configurations.

13.3.2 Quantum Tunneling

Quantum tunneling is the phenomenon whereby a wave function can propagate through a potential energy

barrier, a process which is wholly forbidden in classical mechanics. Imagine a ball rolling up a hill: if the ball

has an energy E > Ug, where Ug represents the gravitational potential energy at the top of the hill, it will

roll over and reach the other side. Otherwise, if E < Ug, the ball will reflect from the energy barrier and roll

back down, never to be found on the other side of the hill. In contrast, when a quantum mechanical particle

approaches an energy barrier there is a small probability of penetration into the classically forbidden region,

as we’ve seen. In fact, if the energy of the wave function is large enough and the potential energy barrier short

enough, the wave function may be found on the other side of the barrier! Although the wave function would

have decreased within the barrier, it hasn’t vanished when it reaches the other side.

This scenario is analogous to if the ball rolling up a hill described earlier, instead of rolling back down

the hill, rolled straight through the hill when it reached the classical turning point. Although this is strictly

forbidden in classical mechanics, it is acceptable behavior to quantum mechanical particles.

We’ll now go on to derive the transmission probability of a particle in a box, that is, the probability a

particle will tunnel completely through a potential energy barrier and reach the other side. Suppose that we

have a particle defined on the following intervals with associated potential energies:

Region 1 V (x) = 0 for x ≤ 0
Region 2 V (x) = V0 for 0 < x ≤ L
Region 3 V (x) = 0 for L < x
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We’ll assume that the particle is bounded by an infinite potential somewhere less than zero so that it does

not penetrate at all outside of the boundary at x = 0 and x = L. Therefore, in region 1 we require that the wave

function look something like that of our wave function for the finite barrier case, written ψ1(x) = Aeiαx+Be−iαx

for constants A, B, and α.

The spatial component of the wave function must have the following form in each region if the energy of

the particle at any point in space is less than the potential energy barrier V0:

ψ1(x) = Aeiαx +Be−iαx α =
√

2mE
}2 Region 1

ψ2(x) = Ce−βx +Deβx β =
√

2m(V0−E)
}2 Region 2

ψ3(x) = Feiαx +Ge−iαx Region 3

Assuming that the wave approaches the barrier from the negative x direction, i.e., interacting with the

barrier at x = 0 first, we can suppose that the coefficient B is nonzero since the term Be−iαx represent a

reflection from the barrier. Similarly, the term Ge−iαx represents a reflection from the barrier in the positive

x region, at x = L. In contrast to before, however, we aren’t interested in this reflection and therefore allow

G = 0.

By the differentiability of the wave function we know that at each barrier the wave must be smooth and

continuous. That is, ψ1(0) = ψ2(0) and ∂
∂xψ1(0) = ∂

∂xψ2(0). Similar statements can be made for the barrier at

x = L and the wave functions ψ2(x) and ψ3(x). Firstly, we’ll concern ourselves with the barrier at x = 0:

ψ1(0) = ψ2(0) ⇒ Aeiα(0) +Be−iα(0) = Ce−β(0) +Deβ(0)

A+B = C +D (13.3.6)

∂ψ1(0)

∂x
=
∂ψ2(0)

∂x
⇒ iαAeiα(0) − ααBe−iα(0) = −βCe−β(0) + βDeβ(0)

iαA+−iαB = −βC + βD

A−B = − iβ
α

(−C +D) (13.3.7)

Equations (13.3.6) and (13.3.7) represent two conditions that the wave functions in regions 1 and 2 must satisfy

in order for a the energy of the wave function to be allowed. Now, we consider the boundary at x = L, invoking

the condition that G = 0 as previously mentioned.

ψ2(L) = ψ3(L) ⇒ Ce−βL +DeβL = FeiαL (13.3.8)

∂ψ2(L)

∂x
=
∂ψ3(L)

∂x
⇒ − βCe−βL + βDeβL = iαFeiαL

−Ce−βL +DeβL =
iα

β
FeiαL (13.3.9)

Equations (13.3.8) and (13.3.9) represent two more conditions that the wave functions in regions 2 and 3 must

satisfy in order for the energy of the wave function to be allowed.

At this point we may recognize that the transmission probability is given by the term |F/A|2. Note that

the term Aeiαx represents a wave incident to the barrier coming from the negative direction while the term

Feiαx represents a wave moving away from the barrier in the positive x direction. Therefore, we consider the

ratio

FF ∗

AA∗
=

∣∣∣∣
F

A

∣∣∣∣
2

to be the probability of the wave emerging on the other side of the barrier when coming in contact with it. It

is useful to manipulate Equations (13.3.6) through (13.3.9) to get a relationship between F and A. By adding

and subtracting the first pair of equations, A and B can be expressed in terms of C an D. The second pair
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of equations can be combined in the same way to give equations for C and D in terms of F . To acquire an

expression for D we’ll add together Equations (13.3.8) and (13.3.9):

Ce−βL +DeβL +
(
−Ce−βL +DeβL

)
= FeiαL +

(
iα

β
FeiαL

)

2DeβL =
β

β
FeiαL +

iα

β
FeiαL

D =
iαeiαL + βeiαL

2βeβL
F (13.3.10)

To acquire an expression for C we’ll subtract Equation (13.3.9) from (13.3.8):

Ce−βL +DeβL −
(
−Ce−βL +DeβL

)
= FeiαL −

(
iα

β
FeiαL

)

2Ce−βL =
β

β
FeiαL − iα

β
FeiαL

C =
−iαeiαL + βeiαL

2βe−βL
F (13.3.11)

To acquire an expression for A we’ll add Equations (13.3.6) from (13.3.7):

A+B + (A−B) = C +D +

(
− iβ
α

(−C +D)

)

2A =
αC + αD + iβC − iβD

α

A =
iαC + iαD − βC + βD

2iα

=
(iα− β)C + (iα+ β)D

2iα
(13.3.12)

as desired. We can substitute Equations (13.3.10) and (13.3.11) into Equation (13.3.12) to obtain an expression

for A in terms of F :

A =
iα− β

2iα

(−iαeiαL + βeiαL

2βe−βL
F

)
+
iα+ β

2iα

(
iαeiαL + βeiαL

2βeβL

)
F

=
eiαL

2iα(2β)

[
iα− β

(−iα+ β

e−βL

)
+ iα+ β

(
iα+ β

eβL

)]
F

2iαA =
eiαL

2β

[
(iα− β)(−iα+ β)eβL + (iα+ β)(iα+ β)e−βL

]
F (13.3.13)

At this point we can take advantage of the functions hyperbolic sine and hyperbolic cosine with the associated

identities

sinhx =
ex − e−x

2
, and coshx =

ex + e−x

2

and the relationship cosh2 x − sinh2 x = 1, to manipulate Equation (13.3.13) into a more functional form for
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the transmission probability. With a little bit of algebraic gymnastics we can show that

2iαA =
eiαL

2β

[
(iα− β)(−iα+ β)eβL + (iα+ β)(iα+ β)e−βL

]
F

A

F
=
eiαL

4iαβ

[
(−i2α2 + 2iαβ − β2)eβL + (i2α2 + 2iαβ + β2)e−βL

]

=
eiαL

2iαβ

[ (
α2 + 2iαβ − β2

) eβL
2

+
(
−α2 + 2iαβ + β2

) e−βL
2

]

=
eiαL

2iαβ

[
α2

(
eβL − e−βL

2

)
+ 2iαβ

(
eβL + e−βL

2

)
− β2

(
eβL − e−βL

2

)]

=
eiαL

2iαβ

[
(α2 − β2) sinh(βL) + 2iαβ cosh(βL)

]

Now we’ll square this expression. Note that the absolute value bars imply multiplying this expression by its

complex conjugate.

∣∣∣∣
A

F

∣∣∣∣
2

=

(
eiαL

2iαβ

)[
(α2 − β2) sinh(βL) + 2iαβ cosh(βL)

]

×
(
e−iαL

2iαβ

)[
(α2 − β2) sinh(βL)− 2iαβ cosh(βL)

]

=
1

−4i2α2β2

[
(α2 − β2)2 sinh2(βL)− 4i2α2β cosh2(βL)

]

=
1

16α2β2

[
4(α2 − β2)2 sinh2(βL) + 16α2β2 cosh2(βL)

]

=
1

16α2β2

[
4(α2 − β2)2 sinh2(βL) + 16α2β2

(
1 + sinh(βL)

)]

=
1

16α2β2

[
16α2β2 +

(
4(α2 − β2)2 + 16α2β2

)
sinh2(βL)

]

∣∣∣∣
F

A

∣∣∣∣
2

=
16α2β2

16α2β2 +
(
4(α2 − β2)2 + 16α2β2

)
sinh2(βL)

=
16(αβ)2

16(αβ)2 +
(
4(α2 − β2)2 + 16(αβ)2

)
sinh2(βL)

(13.3.14)

which is the transmission probability.

13.3.3 Band Theory

Valence electrons on adjacent atoms in a molecule or solid can have appreciable overlap, as we’ve seen using

the particle in a box method for a finite barrier. This implies that electrons can move between one atom from

the next. If a large number N of identical atoms come together to form a crystal, such as Na(s), the overlap of

atomic orbitals causes each discrete energy level to split into N energy levels, each of a different energy. Since

the number of atoms in a macroscopic piece of solid is very large, the number of orbitals is incredibly large and

thus they are closely spaced. The adjacent energy levels are so closely spaced that they can be considered a

continuum, or an energy band.

A band gap can be thought of as the “leftover” energy levels which are not covered by the band, as a result

of the finite width of bands. Figure 13.6 nicely illustrates this consequence and how it arises naturally from

the interatomic distance of atoms in a crystal. Importantly, remember that although the graph illustrates how

interatomic distance effects conductivity, what’s most important is the overlap of high energy atomic orbitals.

Suppose that we consider the valence electrons of sodium metal. The 3s electron in sodium is weakly

bound to the nucleus and therefore the it’s ground state is fairly high-energy relative to the other electrons
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Figure 13.5: The transmission probability for an electron as a function of energy for V0 = 1.6 × 10−19 J and
L = 9×10−10 m up to an energy of 8×10−19 J. Both plots utilize Equation (13.3.14) and are shown for different
window sizes. The transmission probabilities of 0.02 and 0.1 are given for reference.

Figure 13.6: Illustration of how electronic band structure comes about in a large crystal of atoms. The graph to
the right illustrates energy levels as a function of interatomic distance in diamond. When atoms are far apart,
each carbon has valence p and s orbitals which have equal energy. When brought close enough together their
orbitals begin to overlap and give rise to bands. Distance between valence and conduction band in diamond is
5.5 eV. At room temp, very few electrons attain the thermal energy necessary to surmount this gap, hence the
reason why diamond does not conduct electricity.
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in the atom. As sodium atoms grow nearer to each other, the wave functions of the valence electron attain

more significant overlap and the ground state energy of the valence electrons in each atom is greater than the

potential energy between them. Figure 13.7 illustrates how adjacent sodium atoms allow electrons to delocalize

and conduct electricity.

Figure 13.7: The overlap of electron wave function as two sodium atoms grow closer to one another. xe
represents the interatomic distance and the grey line through the wave function represents the zero-point
energy of the valence electron. Since this energy is greater than the potential energy between the atoms the
electron is allowed to delocalized and conduct electricity.



CHAPTER

14

UNCERTAINTY AND COMMUTATION

RELATIONS

Uncertainty

- Scientist

Classical physics predicts that there is no limit to the amount of information that can be known about a

system at a given instant of time. In other words, the exact value of all possible observables can be known and

knowledge about the behavior of the system with time can be precisely determined. This is not the case in

quantum mechanics.

Uncertainty limits the degree to which certain observables can be known simultaneously. Since the

uncertainty principle is ubiquitous within quantum mechanics, numerous experiments have been conducted

with and without the express purpose of illustrating this effect. A common method of determining if two

observables can be simultaneously known measuring whether or not they commute using a commutator.

Importantly, operators which commute share common eigenstates, and can be simultaneously known.

14.1 Commutation Relations

The values for two different observables, say, a and b, which correspond to operators Â and B̂, can be simulta-

neously determined if and only if the measurement process does not change the state of the system. Otherwise,

the system on which the second measurement is made is not the same as if the same measurement had been

made first.

Suppose that ψ represents a wave function and that Â and B̂ operate on ψ such that ψ is an eigenfunction

of both operators. If we first operate on ψ with Â and then follow it up by operating with B̂ we’d expect that

B̂[Âψ] = B̂[aψ] = aB̂ψ since a is a constant. Similarly, since ψ is also an eigenfunction of B̂, carrying out the

operation with B̂ first would yield Â[B̂ψ] = bÂψ.

The only case in which ψ is an eigenfunction of both Â and B̂ is if the first measurement does not change

the state of the system. In such a case, we’d expect that Â[B̂ψ] = B̂[Âψ] = abψ. Thus, we conclude that the

act of measurement changes the state of ψ unless ψ is an eigenfunction of both operators. This is the condition

210
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for being able to simultaneously and precisely know the values of two observables. Determining whether or not

ψ is an eigenfunction of two operators can therefore be done testing the relationship

Â[B̂ψ]− B̂[Âψ] = 0 (14.1.1)

which corresponds to Â[B̂ψ] = B̂[Âψ]. If Equation (14.1.1) holds for two operators those operators are said to

commute.

An incredibly useful application of commutators comes in the form of determining whether or not the

angular momentum operators for a particle commute. Recall that the angular momentum for a particle takes

the form ~l = ~r × ~p for the position and momentum vectors ~r and ~p. The angular momentum for each of the x,

y, and z directions can be determined by evaluating the cross product:

~l = ~r × ~p =

∣∣∣∣∣∣∣

î ĵ k̂

x y z

px py pz

∣∣∣∣∣∣∣

= (ypz − zpy )̂i− (xpz − zpx)ĵ + (xpy − ypx)k̂ = ~lx +~ly +~lz

By substituting the position and momentum operators we can determine the corresponding angular

momentum operators:

l̂x + l̂y + l̂z =

(
−i}y ∂

∂z
+ i}z

∂

∂y

)
î−
(
−i}x ∂

∂z
+ i}z

∂

∂x

)
ĵ +

(
−i}x ∂

∂y
+ i}y

∂

∂x

)
k̂

= −i}
(
y
∂

∂z
− z ∂

∂y

)
î− i}

(
−x ∂

∂z
+ z

∂

∂x

)
ĵ − i}

(
x
∂

∂y
− y ∂

∂x

)
k̂

Now, we’ll evaluate the commutator [l̂x, l̂y] on some arbitrary wave function ψ(x, y, z):

[l̂x, l̂y] = l̂x[l̂yψ]− l̂y[l̂xψ]

= −i}
(
y
∂

∂z
− z ∂

∂y

)[
−i}

(
−x ∂

∂z
+ z

∂

∂x

)
ψ

]
+ i}

(
−x ∂

∂z
+ z

∂

∂x

)[
−i}

(
−y ∂

∂z
+ z

∂

∂y

)
ψ

]

= −}2

(
y
∂

∂z
− z ∂

∂y

)[
−x∂ψ

∂z
+ z

∂ψ

∂x

]
− }2

(
−x ∂

∂z
+ z

∂

∂x

)[
−y ∂ψ

∂z
+ z

∂ψ

∂y

]

= −}2y
∂

∂z

[
−x∂ψ

∂z
+ z

∂ψ

∂x

]
+ }2z

∂

∂y

[
−x∂ψ

∂z
+ z

∂ψ

∂x

]
+ }2x

∂

∂z

[
−y ∂ψ

∂z
+ z

∂ψ

∂y

]
− }2z

∂

∂x

[
−y ∂ψ

∂z
+ z

∂ψ

∂y

]

=

{
}2xy

∂2ψ

∂z2
− }2y

(
z
∂2ψ

∂x∂z
+
∂ψ

∂x

)}
+

{
−}2xz

∂2ψ

∂z∂y
+ }2z2 ∂

2ψ

∂x∂y

}

−
{
}2xy

∂2ψ

∂z2
− }2x

(
z
∂2ψ

∂y∂z
+
∂ψ

∂y

)}
−
{
−}2yz

∂2ψ

∂x∂z
+ }2z2 ∂

2ψ

∂x∂y

}

= }2y
∂ψ

∂x
− }2x

∂ψ

∂y

= −}2

(
x
∂ψ

∂y
− y ∂ψ

∂x

)

= −(i}× i})l̂zψ = i}l̂zψ

Thus, we see that the operators l̂x and l̂y do not commute. A more rigorous derivation of this relationship can

be done using matrix representations for operators, though, we don’t really care about that.
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The cyclic relations of commutations between angular momentum operators is fairly intuitive:

[l̂x, l̂y] = i}l̂z
[l̂x, l̂z] = i}l̂y
[l̂y, l̂z] = i}l̂x

14.2 The Uncertainty Principle

The uncertainty principle is a quantum mechanical result that asserts a fundamental limit to the accuracy

with which pairs of physical quantities can be measured. The most famous of these, the Heisenberg uncertainty

principle, relates the uncertainty in a particle’s position to its momentum such that

σxσp ≥
}
2

(14.2.1)

where σx and σp are the respective standard deviations in the position and momentum which have the same

meaning as uncertainty.

Pairs of variables which satisfy this inequality are known as complementary or conjugate variables. In

classical physics, conjugate variables are found by considering the action of a system, which is a numerical value

describing how a system changes over time.1 The action of a system has units of joule-seconds; products of

quantities which afford these units include energy × time or momentum × length. Action relates to conjugate

variables because the derivatives of action with respect to some variable is conjugate to the variable with which

we are differentiating. I know, that doesn’t immediately make a ton of sense. So, consider the example of the

conjugate variables length and momentum. In this case, action = px for the momentum p and length x and

therefore

d(action)

dx
= p or

d(action)

dp
= x

So, x and p are conjugate variables. While we are analyzing conjugate pairs of variables using classical me-

chanics, these same pairs are related via the uncertainty principle. More common examples include,

• The change in energy of a particle and the time it takes for the change to occur

• The angular momentum of a particle and its orientation, or angular position

• The electric potential and the negative free electric charge of some event

among others.2 The uncertainty relation between energy and time is a consequential one. Consider the energy

of an electron in hydrogen in the 1s state. The energy of this electron is known very precisely because the

lifetime of an electron in this state is very long, since its the ground state. Excited state which decay rapidly,

in the case of hydrogen those might be the 2s, 2p, or 3s shells, have more uncertainty in their energy since the

lifetime of an electron in that state is much shorter.

Most generally, the uncertainty principle of quantum mechanics is related by the commutator of two

operators:

σAσB ≥
1

2
[Â, B̂] (14.2.2)

Here, we are assuming that the operators Â and B̂ do not commute.

1Action is significant because the equations of motion for a system, whether we consider Newtonian, Hamiltonian, or Lagrangian
mechanics, can all be derived through the principle of least action. For our purposes, however, we only need to know how to calculate
it.

2Conjugate variables are also Fourier transforms of one another, a consequence of Fourier’s theorem, which is exceedingly
intertwined with any discussion regarding waves and periodic functions.
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This principle can be nicely illustrated with a free particle. The most general form of a periodic wave

function for a free particle may be written

Ψ(x, t) = Aei(kx−ωt−φ)

for some constant A, a wave vector k = 2π/λ, an angular frequency ω = 2πν, and phase angle φ. For

convenience, we’ll allow t = 0 and φ = 0 so that we consider only the spatial variation, ψ(x). Firstly, we’ll

ensure that ψ(x) is normalized over some arbitrary finite interval:

∫ a

−a

∫ a

−a
ψ∗(x)ψ(x)dx =

∫ a

−a

∫ a

−a
A∗e−ikxAeikxdx

= |A|2
∫ a

−a

∫ a

−a
dx

= 2a|A|2

Thus, the normalization constant for ψ(x) along this interval is A = 1/
√

2a. Note that although we’re consider-

ing the wave function across some fixed interval −a < x < a, we are not confining the particle to this interval.

Instead, normalizing the wave function over this specific interval allows us to compute relevant probabilities

along −a < x < a. Now, if we consider the probability of finding the particle on some finite width dx centered

at x = x0, by Equation (12.3.1) from the postulates of quantum mechanics we have that

P (x0)dx = ψ∗(x0)ψ(x0)dx =
dx

2a

is the probability. Importantly, this probability is independent of position. Recall that the wave function we

considered was that of a free particle such that a→∞. Thus, the probability of finding the particle anywhere,

i.e., knowing the particle’s position, is zero. Additionally, note that we can operate on ψ(x) with the momentum

operator to afford p̂ψ(x) = }k. This implies that the momentum is known exactly. Thus, we’ve seen that being

able to measure the momentum of a particle exactly necessarily implies that we know absolutely nothing about

the position.

14.2.1 The Uncertainty Principle in Terms of Standard Deviations

Uncertainty, from a statistical perspective, is quantified by the standard deviation of a distribution. The

standard deviation is defined as

σ2
x =

〈
x2
〉
− 〈x〉2 (14.2.3)

where 〈x〉 is the average value of some variable. x could be the position, momentum, or energy of a particle.

The nice things about averages is that if we know the wave function for some quantum mechanical particle we

can compute the average value of any physical observable by the postulates of quantum mechanics.

For example, consider the wave function for the particle in a one-dimensional box of length a:

ψ(x) =

√
2

a
sin
(nπx

a

)
, n = 1, 2, 3, . . .

Recall from Equation (12.3.8) that we can determine the average value of a physical observable by the

equation

〈a〉 =

∫ ∞

−∞
ψ∗(x)Âψ(x)dx

where ψ(x) is assumed to be normalized. Using this equation we can determine the averages of the position and
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momentum, as well as the second moment of each observable. I’ll note that taking advantage of the symmetry

of functions is highly useful in saving time while evaluating some of these integrals.

〈x〉 =

∫ a

0

√
2

a
sin
(nπx

a

)
x̂

√
2

a
sin
(nπx

a

)
dx =

2

a

∫ a

0

x sin2
(nπx

a

)
dx

=
2

a

∫ a

0

x

[
1

2
− 1

2
cos

(
2nπx

a

)]
dx =

2

a

∫ a

0

x

2
− x

2
cos

(
2nπx

a

)
dx

=
2

a

∫ a

0

x

2
dx =

2

a

[
x2

4

]a

0

=
a

2
(14.2.4)

〈
x2
〉

=
2

a

∫ a

0

x2 sin2
(nπx

a

)
dx =

2

a

∫ a

0

x2

[
1

2
− 1

2
cos

(
2nπx

a

)]
dx

=
2

a

∫ a

0

x2

2
− x2

2
cos

(
2nπx

a

)
dx

=
2

a

{∫ a

0

x2

2
dx− 1

2

([
ax2 sin

(
2nπx
a

)

4nπ

]a

0

−
∫ a

0

2ax sin
(

2nπx
a

)

2nπ
dx

)}

=
2

a

{[
x3

6

]a

0

+
a

2nπ

∫ a

0

x sin

(
2nπx

a

)
dx

}

=
2

a

{
a3

6
+

a

2nπ

([
−ax cos

(
2nπx
a

)

2nπ

]a

0

+

∫ a

0

a cos
(

2nπx
a

)

2nπ
dx

)}

=
2

a

{
a3

6
+

a

2nπ

(
− a2

2nπ

)}
=

2

a

{
a3

6
− a3

4n2π2

}

= a2

{
1

3
− 1

2n2π2

}
(14.2.5)

Using Equations (14.2.4) and (14.2.5) we can compute the standard deviation for the position of the particle

in a box as

σx =

√
a2

{
1

3
− 1

2n2π2

}
−
(a

2

)2

= a

√
1

12
− 1

2n2π2

Now we follow an identical procedure for determining the uncertainty in the momentum for the particle

in a box:

〈p〉 =

∫ a

0

√
2

a
sin
(nπx

a

)
p̂

√
2

a
sin
(nπx

a

)
dx =

2

a

∫ a

0

sin
(nπx

a

)[
−i} ∂

∂x
sin
(nπx

a

)]
dx

=
2

a

∫ a

0

sin
(nπx

a

)[
− i}nπ

a
cos
(nπx

a

)]
dx

= −2i}nπ
a2

∫ a

0

sin
(nπx

a

)
cos
(nπx

a

)
dx = 0 (14.2.6)

〈
p2
〉

=

∫ a

0

√
2

a
sin
(nπx

a

)
p̂2

√
2

a
sin
(nπx

a

)
dx =

2

a

∫ a

0

sin
(nπx

a

)[
−}2 ∂

2

∂x2
sin
(nπx

a

)]
dx

=
2}2n2π2

a3

∫ a

0

sin2
(nπx

a

)
dx

=
2}2n2π2

a3

∫ a

0

[
1

2
− 1

2
cos

(
2nπx

a

)]
dx

=
2}2n2π2

a3

[
x

2
− a

4nπ
sin

(
2nπx

a

)]a

0

=
}2n2π2

a2
(14.2.7)
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Equations (14.2.6) and (14.2.7) allow us to find the standard deviation of the momentum for the particle in a

box:

σp =

√
}2n2π2

a2
− (0)

2

=
}nπ
a

The Heisenberg uncertainty principle asserts that the product of the uncertainties in position and mo-

mentum should be greater than or equal to }/2, from Equation (14.2.1). So, let’s test this for our results above

using the ground state, n = 1:

σxσp =

(
a

√
1

12
− 1

2n2π2

)(
}nπ
a

)
= }

√
n2π2

12
− 1

2
≈ 0.57} >

1

2
}

Awesome! Our model for the particle in a box isn’t breaking any physical laws, which is good. Note that the

product of the uncertainties is slightly greater than }/2, emphasizing that the uncertainty principle places a

lower bound on what we can simultaneously know about two physical quantities.

14.2.2 The Size of an Atom

One important application of the uncertainty principle is in determining the size of atoms. Recall that from the

perspective of classical physics, atoms should not exist because we expect electrons to spiral into the nucleus.

If this were the case, electrons would have a definite position and momentum: situated at the nucleus with no

momentum whatsoever. Clearly this is at odds with the uncertainty principle. Therefore, it must be the case

that an electron can spiral into the nucleus no further than what is consistent with the uncertainty principle.

Consider the hydrogen atom. Here, the electron is trapped in some potential energy well due to the

positive charge of the nucleus. Suppose that the electron is confined to some spherical shell about the nucleus

of radius r so that its position may be uncertain up to the radius r in all of the x, y, and z directions.

Similarly, the x, y, and z components of the momentum, denoted px, py, and pz, will be equal; by symmetry,

the momentum in each direction is equally likely to be uncertain in either direction so that the uncertainty,

say, in the x direction, is ∆px ≈ p.

By the Heisenberg uncertainty principle, ∆x∆px ≈ } (and similarly for the y and z components) with

∆x ≈ r and ∆px ≈ p. This implies that ∆px ≈ p ≈ }
r and therefore the kinetic energy of the particle becomes

T =
p2

2me
≈ }2

2mer2

Including the coulombic potential of the electron, V =
kqeqp
r = − q2e

4πε0r
,3 the total energy of an electron in the

hydrogen atom becomes

E = T + V ≈ }2

2mer2
− q2

e

4πε0r
(14.2.8)

Using Equation (14.2.8) we can determine the minimum energy of an electron in a hydrogen atom as a

function of the distance between the electron and the nucleus. This is done by allowing the derivative of the

3This is just a result of classical physics. qp and qe are the respective charges of a proton and an electron with qp = −qe.
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total energy with respect to the radial distance between the electron and nucleus to be zero:

∂E

∂r
≈ ∂

∂r

[
}2

2mer2
− q2

e

4πε0r

]

0 = − }2

mer3
+

q2
e

4πε0r2

}2

mer
=

q2
e

4πε0

r ≈ 4πε0}2

meq2
e

≈ 5.28× 10−11 m

Plugging this result back into Equation (14.2.8) affords the ionization energy for the electron in a hydrogen

atom:

E ≈ }2

2me

(
4πε0}2

meq2e

)2 −
q2
e

4πε0

(
4πε0}2

meq2e

)

≈ meq
4
e

8ε2
0h

2
− meq

4
e

16ε2
0h

2

≈ −meq
4
e

8ε2
0h

2

≈ −13.61 eV

which agrees with the known ionization energy for the electron in a hydrogen atom.

14.3 The Stern-Gerlach Experiment

The Stern-Gerlach experiment demonstrated that the angular momentum of an electron is quantized and is

one of the most direct pieces of evidence of quantization in quantum mechanics. In particular, the experiment

represents a direct measurement of one component of the spin of an electron.

Before analyzing this experiment we’ll recall some results from classical mechanics. The angular momen-

tum of a particle is defined as

~L = ~r × ~p (14.3.1)

where ~r and ~p are the position and momentum vectors, respectively, and the angular momentum vector ~L is

defined as their cross product. Oftentimes, ~L is referred to as the orbital angular momentum, since it is an

important consideration in describing the properties of a particle orbiting around some center of attraction. In

classical mechanics there is no restriction on the magnitude or direction of ~L.

Because an electron carries an intrinsic charge, its (classical) angular momentum will result in a magnetic

field whose strength is measured by the magnetic moment, ~µ, related to the orbital angular momentum by

~µ =
qe

2me

~L

for the respective charge and mass of an electron, qe and me. Through experimentation, however, the quantum

mechanical spin magnetic momentum is found to be

~µS ≈ −
2qe
2me

~S = − qe
me

~S (14.3.2)
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where ~S is the spin angular momentum vector of an electron.4

The experiment itself is setup as follows. A beam of silver atoms having a well-defined direction passes

through a magnetic filed that has a constant value in the xy-plane and varies linearly with z such that E(z) ∼ z
for the electric field E. The silver atoms pass through the magnetic field and are detected some distance beyond

the magnetic which is arbitrary for the time being. The reason silver was used in this experiment was because a

silver atom has a single lone electron which has an intrinsic magnetic moment (the property of electrons having

a magnetic moment was unknown before the Stern-Gerlach experiment).

Figure 14.1: The apparatus in the Stern-Gerlach experiment. A beam of silver atoms is directed in the y-
direction through a magnetic field that varies linearly with z. Consequently, the beam is directed in only the
z-direction.

The results of this experiment illustrated that silver atoms were reflected in only the z-direction and that

only two displacements in the z direction were observed: the displacement corresponding to an upward deflection

and the displacement corresponding to the downward deflection, both of which had the same magnitude. Thus,

the electron in silver must have some sort of magnetic moment since it reacts to the external magnetic field.

In particular, the measured displacement corresponded to the lone electron in silver having a spin-magnetic

moment of

µz = ±µB = ± qe}
2me

(14.3.3)

where µB is the Bohr magneton and qe is the charge of an electron. If we consider Equation (14.3.2), we see

that in order for the magnetic moment in Equation (14.3.3) to correspond to that experimentally determined

in Equation (14.3.2), the magnitude of the spin vector ~S must be

S = ±}
2

which makes sense since electrons are spin- 1
2 particles (a result from physics that we don’t particularly care

about but is good to know). In classical mechanics, we would expect the magnetic moment to take on any real

value and therefore any displacement in the z direction would have been possible. Clearly, this is not what

we’ve observed.

What conclusions can be drawn from this result? If we suppose that an operator Ŝ exists which operates

on a silver atom to measure its magnetic moment, we conclude that only two eigenvalues (and two corresponding

eigenfunctions) exist for the operator which differ only in sign. We’ll call these two eigenfunctions ψ+ and ψ−
and assume that they’re properly normalized. Note that since these two eigenfunctions represent all possible

observables in this experiment they form a complete set of all possible eigenfunctions of the system and therefore

any linear combination of ψ+ and ψ− yields another valid eigenfunction for the operator Ŝ. So, the most general

4The approximation in Equation (14.3.2) is because the spin angular momentum is more formally defined as

~µS = −
qeg

2me
~S

where g is the gyromagnetic ratio. In classical mechanics g ≈ 1 but for an electron, g ≈ 2.
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solution to the (spatial) wave function corresponding to the electrons in a silver atom in this beam which is an

eigenfunction of Ŝ may be written

ΨS(x) = c1ψ+(x) + c2ψ−(x) with |c1|2 + |c2|2 = 1 (14.3.4)

I’m gonna make a brief aside. We know that the coefficients of Equation (14.3.4) must satisfy the equality

|c1|2 + |c2|2 = 1 by the orthogonality of eigenfunctions and normalization condition of the wave function. Since

ψ∗(x)ψ(x)dx represents a probability,

1 =

∫ ∞

−∞
Ψ∗(x)Ψ(x)dx

=

∫ ∞

−∞

(
c1ψ
∗
+(x) + c2ψ

∗
−(x)

)(
c1ψ+(x) + c2ψ−(x)

)
dx

=

∫ ∞

−∞

(
|c1|2ψ∗+(x)ψ+(x) + c1c

∗
2ψ+(x)ψ∗−(x) + c∗1c2ψ

∗
+(x)ψ−(x) + |c2|2ψ∗−(x)ψ−(x)

)
dx

=

∫ ∞

−∞
|c1|2|ψ+(x)|2dx+

∫ ∞

−∞
|c2|2|ψ−(x)|2dx

= |c1|2 + |c2|2

which agrees with the result asserted previously.

A similar argument may be made for the operator which measures the magnetic moment in any one of

the x, y, or z directions. What we will inevitably find is that none of these operators commute. That is, we

can never know the spin-magnetic moment of an electron in any two directions simultaneously. Consider the

experimental setup in Figure 14.2. Here, a beam of silver atoms is shot through three different Stern-Gerlach

devices, the first and last of which measure the spin-magnetic moment in the z direction and the second of

which measures it in the x direction.

Figure 14.2: A series of measurements carried out using three Stern-Gerlach devices. The “oven” emits a beam
of silver atoms and each box measures the spin-magnetic moment with respect to its label, i.e., the box labeled
“Z” measures the spin-magnetic moment in the z direction.

After the beam passes through the first device, the spin-magnetic moment in the z direction is measured

(to be + 1
2}, in this case). Then, the beam passes through the second device which measures the spin-magnetic

moment in the x direction. From the perspective of classical physics, if we operated on the beam of silver atoms

again with Ŝz, that is, measured the spin-magnetic moment in the z direction, we’d expect the same result as

if we had never operated on the beam with Ŝx. This is not the case! Instead, operating on the beam with Ŝz

results in a distribution of spins identical to if we had zero information about the system to begin with.

I think that this is a great example because it illustrates two things. Firstly, the loss of information (or

the uncertainty, as it were) when trying to measure two physical quantities which do not commute. Although

the beam of atoms entering the Stern-Gerlach device which operates with Ŝx in Figure 14.2 is “prepared” in the
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Sz = 1
2} state, after operating on the beam with Ŝx its as if no information about the beam of atoms was known

to begin with. Secondly, it reinforces the point that the only physical observables of a quantum mechanical

system that can ever be measured are those which are eigenvalues of some operator. Sure, operating on the

beam of atoms with Ŝx removes any information we had previously attained about the spin-magnetic moment

in the z direction, however, we always know that the only possible values of the spin-magnetic moment in the

z direction will be ± 1
2}.



CHAPTER

15

VIBRATIONS AND ROTATIONS OF

QUANTUM MECHANICAL PARTICLES

Vibrations

- Scientist

A molecule is capable of having electronic, translational, rotational, and vibrational energy states, each of

which is described by its own energy spectrum and eigenfunctions. As we’ve seen, the particle in a box is a

useful model for discussing the allowed energies for translational degrees of freedom. Now, we consider the

harmonic oscillator to to explore vibrational degrees of freedom, followed by looking at a rigid rotor to analyze

the effects of rotational freedoms on the energy of a molecule.

15.1 Classical Harmonic Oscillator

In any general physics class you’ve probably found solutions to the position of a harmonic oscillator (using a

simple spring as a model) as a function of time using Hooke’s law, F = −kx for some force constant k and

displacement from the equilibrium position x. In the simplest case where the oscillator is fixed on one end

and has some object of mass m on the other end, solutions are readily found. When the harmonic oscillator is

allowed the freedom to move on either end, such as in the case of a diatomic molecule like HF or OH– , however,

the location of each mass change differently with time and Hooke’s law must be rewritten.

To model this scenario we can take advantage of the reduced mass, defined as

µ =
m1m2

m1 +m2
(15.1.1)

where m1 and m2 are the masses of the objects on either end of the oscillator. Using the reduced mass allows us

to transform a two-body problem into a one-body problem, which is much easier to solve; Hooke’s law becomes

F = −kµ for the reduced mass and as we’ll come to learn, in almost every case we can substitute µ for m in

any classical equation of motion to yield a corresponding equation of motion which concerns two bodies.

220
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Now we can go about solving for the trajectory of a two-body harmonic oscillator as a function of time

using the reduced mass and Hooke’s law:

F = µa = −kx
d2x

dt2
= −k

µ
x

⇒ x(t) = c1 cos

(√
k

µ
t

)
+ c2 sin

(√
k

µ
t

)

A more detailed picture of how to solve differential equations of this form can be found in Appendix ??. If

we restrict solutions to x(t) to the initial conditions x(0) = 0 and v(0) = v0 (the initial velocity), the specific

solution to the trajectory of this oscillator becomes

x(0) = c1 cos

(√
k

µ
× 0

)
+ c2 sin

(√
k

µ
× 0

)
= c1 = 0

v(0) = −c1 sin

√
k

µ

(√
k

µ
× 0

)
+ c2

√
k

µ
cos

(√
k

µ
× 0

)
= c2

√
k

µ
= v0

Thus,

x(t) = v0

√
µ

k
sin

(√
k

µ
t

)

is the general solution to the two-body harmonic oscillator.

We can determine the period and frequency of the oscillator as follows: Since the sine function has a

period of 2π, it must be the case that

2π =

√
k

µ
(t+ T )−

√
k

µ
t

where T is the period of oscillation and t is an arbitrarily chosen time. This affords the condition T = 2π
√

µ
k

and therefore the linear frequency of oscillation is ν = 1
2π

√
k
µ . This allows us to rewrite the specific solution to

the harmonic oscillator as

x(t) = b1 sin(ωt) (15.1.2)

where ω =
√

k
µ is the angular frequency and b1 = v0

√
µ
k is the amplitude.

Having supplanted an mathematical description of motion for the harmonic oscillator, we can test the

physicality of our solution by considering the energy of the system. Recall that the kinetic energy of a body is

given by (and substituting the reduced mass for a single mass), T = 1
2µv

2 and that the potential energy can

be found via the relation F = −∂V
∂x to afford U = 1

2kx
2. Thus, the total energy of the system is given by

E = T + V =
1

2
µv2 +

1

2
kx2

Because there are no constraints on the displacement length or velocity of the oscillator, the energy spectrum

for a classical oscillator is continuous. Plugging in our result for the trajectory of the system in Equation
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(15.1.2),

E =
1

2
µ (b1ω cos(ωt))

2
+

1

2
k (b1 sin(ωt))

2

=
1

2
µb21ω

2 cos2(ωt) +
1

2
kb21 sin2(ωt)

=
1

2
µb21ω

2 cos2(ωt) +
1

2
µω2b21 sin2(ωt)

=
1

2
µb21ω

2 (15.1.3)

which is the total energy of the oscillator with each constant defined previously. Above I took advantage of the

relationship k = µω2 to make factoring easier. Notice that this expression is independent of time, exactly as

we would expect for a system which is not exchanging energy with its surroundings.

Following a similar procedure for a quantum mechanical oscillator, we’ll see that the energy spectrum

follows a discrete spectrum (potentially unsurprisingly). The analysis performed here for a classical harmonic

oscillator will allow us to compare and contrast the results across the classical and quantum views of mechanics.

15.1.1 Probability Density for a Classical Harmonic Oscillator

The classical probability density for a harmonic oscillator represents the likelihood of finding a particle near a

certain location subject to some potential energy function. This probability density will be helpful in gaining

insight into the correspondence principle and making connections between classical and quantum mechanics.

If we consider a harmonic oscillator with a trajectory modeled by Equation (15.1.2), the position where

the particle is most likely to be found will be directly proportional to the amount of time spent at that position.

For example, in regions of high velocity (near the equilibrium position), the particle will spend very little time

and therefore is unlikely to be found there at any given instant. In contrast, at the classical turning points

(regions of maximal amplitude), the particle has very little kinetic energy and spends more time in the region

and therefore is more likely to be found there at any given instant. Representing the probability density as

P (x), this corresponds to the relation

P (x)dx ∝ dt (15.1.4)

for some differential changes in position and time, dx and dt. As we’ve seen, the motion of this oscillator is

periodic so that the displacement of an object is bounded below and on top and therefore the density can be

properly normalized for some normalization constant N :

∫ xmax

xmin

P (x)dx = N

∫ t0+T/2

t0

dt = 1

Above, xmin and xmax correspond to the amplitudes (in the negative and positive directions, respectively), t0

is some arbitrarily chosen time, and T is the period of oscillation.

Note that the oscillator travels from xmin to xmax within half of a period ; a full period of oscillation

corresponds to traveling from xmin, to xmax and back to xmin. Hence, the integral on the right-hand side

evaluates to T/2 and the normalization constant must be N = 2/T .

We’re almost there! Notice that by the chain rule we have that dx =
(
dx
dt

)
dt and therefore dt = dx

dx/dt =

dx/v(x) for a velocity as a function of position v(x). The, the probability density in Equation (15.1.4) becomes

P (x)dx =
2

T

dx

v(x)
(15.1.5)

where the normalization constant N = 2/T is added.

We no go about applying the probability density in Equation (15.1.5) to the trajectory for a classical

harmonic oscillator found in Equation (15.1.2). In the analysis above we went to a lot of trouble to express the
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probability in terms of position instead of time. So, just plugging in Equation (15.1.5) to (15.1.5) would defeat

that work since we’d be reintroducing time into the expression. Instead, we’ll begin by rewriting the expression

for the probability density in terms of energies. Note that the velocity of the oscillator is directly related to the

kinetic energy which is directly related to the total energy:

T = E −V(x)

1

2
µv2 = E −V(x)

v(x) =

√
2(E −V(x))

µ

Above, V(x) = 1
2kx

2 is the potential energy for the classical harmonic oscillator. Now, Equation (15.1.5)

becomes

P (x)dx =
2

T

dx√
2(E−V(x))

µ

=
2

T

√
µ

2(E −V)
dx =

1

T

√
2µ

E −V
dx

Together, with the expression for the potential energy V = 1
2kx

2, the relation k = µω2 defined previously, the

period of oscillation T = 2π
√

µ
k , and the total energy for a harmonic oscillator found in Equation (15.1.3), we

have that

P (x)dx =
1

T

√
2µ

E −V
dx

=

(
1

2π

√
k

µ

)√
2µ

1
2µb

2
1ω

2 − 1
2µω

2x2
dx

=
ω

2π

√
4

ω2(b21 − x2)
dx

=
1

π

1√
b21 − x2

dx (15.1.6)

Equation (15.1.6) represents the probability density for a classical harmonic oscillator of amplitude b1. A plot

of this probability density is illustrated in Figure 15.1.
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Figure 15.1: Probability density for classical harmonic oscillator. From Equation (15.1.6), the parameters are
b1 = 0.0008 over an interval of x ∈ [−b1, b1].
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15.2 The Quantum Harmonic Oscillator

We now embark on a journey to model the quantum mechanical harmonic oscillator and compare our results to

that of the classical model. As motivation, consider hydrogen fluoride. HF enjoys all of translational, rotational,

and vibrational freedoms (for now we’ll focus on exclusively vibrational freedoms), each of which contributes

to the total energy of the molecule. The energy needed to stretch or compress the chemical bond, for example,

can be described by some potential energy function (the Morse potential, in fact) which has a maximum and

minimum, corresponding to complete overlap and an equilibrium length, respectively.

Near the equilibrium bond length and standard temperatures, the potential energy function is well ap-

proximated by that for a classical harmonic oscillator. When the distance between atoms grows much smaller

than the equilibrium length, repulsive interactions between electrons in each atom dominate and the potential

energy increases to infinity. At distance much larger than the equilibrium length, the overlap of electron clouds

diminishes and the ability of either atom to form a chemical bond goes away. That is all to say, using the

potential energy function for a classical harmonic oscillator at bond lengths far away from the equilibrium

length will fail quickly.

Unlike the classical view which allows a continuous energy spectrum, the quantum mechanical view

discretizes the energy spectrum. The allowed energies are determined by the Schrödinger equation. Using

V(x) = 1
2kx

2 as the potential energy function as discussed in the preceding paragraph, this becomes

Ĥψ(x) = Eψ(x) (15.2.1)

− }2

2µ

∂2ψ(x)

∂x2
+
kx2

2
ψ(x) = Eψ(x) (15.2.2)

where the reduced mass µ is used for a two-body system and ψ(x) is the wave function describing the wave-

particle of mass µ.

Solving this differential equation is hard. Turning to an algebraic solution involves finding solutions in the

limit that the displacement from equilibrium goes to infinity, multiply this solution by a polynomial, deriving

a recursive relationship between the coefficients of said polynomial, proving that the polynomial series must

terminate in order for the wave function to be normalizable, and finally deriving the eigenfunctions for Ĥ.1

Instead of putting myself through that I’ll simply present the solutions to Equation (15.2.1):

ψn(x) = AnHn(α1/2x)e−αx
2/2 (15.2.3)

Here,

An =
1√

2nn!

(α
π

)1/4

(15.2.4)

is the normalization constant of the wave function,

Hn(u) = (−1)neu
2 dn

dun

(
e−u

2
)

(15.2.5)

is the nth Hermite polynomial, and α =
√
µk/}2 = µω/} is a constant. In the expression above we can see

that if n is an even number, Hn is an even (symmetric) function, and if n is odd, Hn is an odd function. This

symmetry will be helpful when we consider the orthogonality of wave functions for the quantum mechanical

1If you’re interested in this derivation it can be found here: https://ocw.mit.edu/courses/physics/

8-04-quantum-physics-i-spring-2013/lecture-notes/MIT8_04S13_Lec08.pdf

https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2013/lecture-notes/MIT8_04S13_Lec08.pdf
https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2013/lecture-notes/MIT8_04S13_Lec08.pdf
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harmonic oscillator. The first few eigenfunctions of Equation (15.2.3) are listed below:

ψ0(x) =
(α
π

)1/4

e−αx
2/2

ψ1(x) =

(
4α3

π

)1/4

xe−αx
2/2

ψ2(x) =
( α

4π

)1/4

(2αx2 − 1)e−αx
2/2

ψ3(x) =

(
α3

9π

)1/4

(2αx3 − 3x)e−αx
2/2

...

Note that all of of the Hermite polynomials are either even or odd functions and that each is orthogonal to one

another. Moreover, they form a complete set for all possible eigenfunctions of the Schrödinger equation.

For any wave function listed above, a necessary boundary condition is that the amplitude must remain

finite for large displacements from the equilibrium position. This condition gives rise to quantization for the

quantum mechanical harmonic oscillator. The energy eigenvalues are

En = }ω
(
n+

1

2

)
= hν

(
n+

1

2

)
, n = 1, 2, 3, . . . (15.2.6)

A more detailed solution to the wave functions and allowed energies for the quantum mechanical oscillator

can be found in Appendix ??. An important aspect of the energies to keep in mind is that the energy eigenvalues

are evenly spaced at a distance of hν from one another. This is in contrast to the particle in a box which had

energy level spacings grow quadratically.

Once again, we’ve seen how boundary conditions and confinement lead to quantization of energy and a

discrete energy spectrum. Similar to the particle in a box, the quantum mechanical harmonic oscillator has a

nonzero zero-point energy. This condition can be thought of as being brought about due to the confinement

caused by attaching the quantum particle to a spring, thereby limiting its motion. As the spring is made more

stiff (k increases and therefore the vibrational frequency increases), the particle is constrained to a greater

extent and the zero-point energy increases in magnitude. An identical trend is observed for a particle in a box

when the length of the box is shortened.

Lastly, I’ll note that the quantum mechanical harmonic oscillator and classical harmonic oscillator have

the same frequency of vibration:

ν =
ω

2π
=

1

2π

√
k

µ
(15.2.7)

15.2.1 Probability Density for a Quantum Harmonic Oscillator

As was done for the classical harmonic oscillator we’ll now look at the probability density for the quantum

harmonic oscillator. Unlike before, however, finding the probability density will differ by the postulates of

quantum mechanics; in this case, we are interested simply in the quantity ψ∗n(x)ψn(x)dx which represents the

probability.

In Figure 15.2 we see that the wave functions and probability densities somewhat resemble those of a

particle trapped in a box. The grey area represents the classically forbidden region. Unlike the classical harmonic

oscillator which is never displaced beyond its turning points, the quantum harmonic oscillator tunnels beyond

this barrier into the forbidden region.

An interesting comparison that can be made is the convergence of the probability density of the quantum

mechanical oscillator to that of the classical oscillator, in Figure 15.3. As the energy level of the quantum
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Figure 15.2: (Left) The wave functions for the first four energy levels of the quantum mechanical harmonic
oscillator. (Right) The probability densities for the first four energy levels of the quantum mechanical harmonic
oscillator. In both plots, the grey area represents the classically forbidden region. Similar to the particle in a
box, quantum particles are allowed to tunnel through the classical turning point with a small probability, as
depicted in the graph.

oscillator increases, the probability density looks more and more like that of the classical oscillator. Intuitively,

this makes sense because of the correspondence principle.
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Figure 15.3: In red is the probability density for the n = 24 energy level of a quantum mechanical harmonic
oscillator. In black is the probability density for a classical harmonic oscillator
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15.3 Rotational Motion

So far we’ve considered quantum mechanical models which deal with translational motion which are easily

expressed using the cartesian coordinates x, y, and z. In these systems, the velocity, momentum, and accel-

eration vectors are all parallel to the directions of motion and the equations of motion (i.e., the Schrödinger

equation) is easily written. Rotational motion, however, does not enjoy these properties and requires alternative

definitions for the corresponding angular vectors, such as angular velocity, angular momentum, and centripetal

acceleration.

The rigid rotor is a simple example of angular motion; it is a good model for thinking about rotational

motion of a diatomic molecule and relies on the assumption that there is no stretching of the bond, hence rigid.

In the rotating systems under consideration, there are no forces which oppose the angular motion and therefore

no potential energy can be stored in the system. In the absence of dissipative forces such as friction or an

external potential energy field, all energy stored in the rigid rotor is kinetic and retained indefinitely.

We first define the centripetal acceleration as

a =
|~v|2
r

(15.3.1)

for some velocity vector ~v and radius r. Note that this definition extends to n-dimensions. In circular motion,

the analog to displacement is angle, that is, the total angle passed through after some time. Hence, the angular

velocity ω is defined as

|~ω| = dθ

dt
(15.3.2)

and the angular acceleration α is

α =
d2θ

dt2
(15.3.3)

The decision to use ω to represent both angular velocity and frequency is sort of unfortunate, so hopefully

context clues will be enough to allow us to distinguish which is being represented at any given time. The

directions of the vectors ~ω and ~α point along the axis of rotation and are determined by the right hand rule.

By the definition of the angular velocity we’re also left with the relation ~v = r~ω for a radius r.

The definitions above are enough to quantify the common forms of energy we deal with most often. The

kinetic energy becomes

Trot =
1

2
µv2 =

1

2
µ(rω)2 =

1

2
µr2ω2 =

1

2
Iω2 (15.3.4)

for a reduced mass µ. Here, we introduce a new quantity I = µr2, the moment of inertia, which measures

the rotational inertia of an object, i.e., the extent to which an object opposes a torque. With the moment of

inertia, the kinetic energy takes a more recognizable form with I taking the place of µ and ω taking the place

of v.

Lastly, we’ll develop a relationship similar to Newton’s second law, F = m~a = d~p
dt , for angular motion.

We start by defining the angular momentum ~L as

~L = ~r × ~p = (ypz − zpy )̂i+ (zpx − xpz)ĵ + (xpy − ypx)k̂ (15.3.5)

for a radial vector ~r = (x, y, z) and momentum vector ~p = (px, py, pz). The × symbol represents a cross product

and the vectors î, ĵ, and k̂ the unit vectors in each of the x, y, and z coordinate directions. The magnitude of

the angular momentum is given by

|~L| = |~r × ~p| = rp sinφ = rµv sinϕ (15.3.6)
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where |~r| = r and |~p| = p. Also, the substitution p = µv was taken directly from the definition of the linear

momentum. Note that ϕ is the angle between the vector ~r and ~p; though, in angular motion ~r and ~p are always

perpendicular so that ϕ = π/2 and |~L| = rµv. So, we can express the kinetic energy as

Trot =
p2

2µ
=
|L|2
µr2

=
|L|2
2I

(15.3.7)

Classical physics predicts that an object undergoing rotational motion can take on any angular momentum
~L and therefore any kinetic energy, by Equation (15.3.7). From the Stern-Gerlach experiment, however, we

know that the angular momentum of quantum particles is quantized and therefore L takes on only particular

values. Hence, the kinetic energy of a particular undergoing rotational motion must also take on only particular

values and is the reason we (will) see a discrete energy spectrum for the quantum mechanical rigid rotor. Also,

this agrees with our intuition about quantum particles having a quantized set of energies no matter the type of

energy.

15.4 Quantum Mechanical Rotation

To a fair approximation, the three types of motion—rotational, translational, and vibrational—can be dealt

with independently. Although these types of motion are not completely decoupled (consider how a spring might

stretch when rotated quickly enough; In this way, rotation and vibration are coupled) , the approximation is

rather exact. Neglecting coupling, the total energy for any particle can be written

E = Etrans(ρ) + Erot(θ, ϕ) + Evib(τ) (15.4.1)

where ρ, θ, and ϕ refer to the spatial coordinates of the center of mass in spherical coordinates, and τ refers

to the vibrational amplitude of the molecule. Since these energies can be written as functions of independent

variables, we can write the Hamiltonian as

Ĥ = Ĥtrans(ρ) + Ĥrot(θ, ϕ) + Ĥvib(τ) (15.4.2)

and the wave function for the particle can be expressed as a product of the wave functions representing each

motion:

Ψn(ρ, θ, ϕ, τ) = R(ρ)Y (θ, ϕ)Λ(τ) (15.4.3)

where R(ρ) represents the spatial/translational contribution to Ψ, Y (θ, ϕ) the rotational contribution, and

Λ(τ) is the vibrational contribution. Going forward, in two-dimensions we’ll make the simplification Y (θ, ϕ) =

Θ(θ)Φ(ϕ) to make it clear the contributions in two- versus three-dimensions. Because we’re able to express

the wave function as a product of independent terms, the Schrödinger equation for the wave function may be

solved by separation of variables.

15.4.1 Quantum Mechanical Rotation in 2 Dimensions

For now, we will limit our discussion to the rigid rotor in two-dimensions such that a particle under consid-

eration experiences no vibrational freedom and the length of the bond between atoms does not change. That

is, ρ remains constant and the vibrational contribution to the total energy is zero. In this case, the Schrödinger
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equation may be written2

ĤΨ = − }2

2µ
∇2Ψn = − }2

2µ

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)

ρ=ρ0

= − }2

2µ

(
1

ρ

∂

∂ρ

[
ρ
∂R(ρ)

∂ρ

]
+

1

ρ2

∂2Θ(θ)

∂θ2

)

ρ=ρ0

= − }2

2µρ2
0

∂2Θ(θ)

∂θ2
= EΘ(θ) (15.4.4)

Equation (15.4.4) has the same functional form as the Schrödinger equation for a free particle in cartesian

coordinates, as we’ve seen previously. Solutions to this equation are

Θ1(θ) = c1e
ikθ & Θ2(θ) = c2e

−ikθ (15.4.5)

for some constants c1, c2, and k, each of which is dependent on the initial conditions of the system. Upon

properly normalizing these wave functions we find that c1 = c2 = 1/
√

2π.

To obtain physically meaningful solutions to Equation (15.4.4) we require boundary conditions on the

wave function. Just as we’ve restricted particles by putting them in a box or attaching them to a spring,

we’ll restrict the motion of this particle by requiring periodicity, that is, the condition that there is no way to

distinguish between a particle that has rotated n times around the circle versus n+ 1 times around the circle.

In other words, for a given angle of rotation θ, the particle should be characterized identically at θ and θ+ 2π.

Using Θ1 as an example, we require

Θ1(θ) = Θ1(θ + 2π) ⇒ c1e
ikθ = c1e

ik(θ+2π)

⇒ ei(2πk) = 1

cos(2πk) + i sin(2πk) = 1

by Euler’s formula. This condition is satisfied if and only if k = 0,±1± 2,±3, . . . and therefore generates the

quantization rules for the constant k. This quantum number is also oftentimes written ml and is related to the

angular momentum vector. The choice of ml to represent this quantum number will become more clear when

we consider quantum mechanical rotation in three dimensions.

For now, however, we’ll consider how the wave function Θ1 behaves under certain operators. One of the

most ubiquitous and important properties of quantum mechanical particles is the angular momentum. From

Equation (15.3.5) we can express the angular momentum operator as

L̂ =

(
−i}y ∂

∂z
+ i}z

∂

∂y

)
î+

(
−i}z ∂

∂x
+ i}x

∂

∂z

)
ĵ +

(
−i}x ∂

∂y
+ i}y

∂

∂x

)
k̂

= L̂x + L̂y + L̂z

with L̂u representing the angular momentum in the u direction. Soon we’ll be interested in using these operators

in different coordinate systems such as polar and spherical. Briefly, I’ll note that the z-component of the

momentum operator may be expressed as

L̂z = −i} ∂
∂θ

(15.4.6)

The other angular momentum operators are unwieldy and unfriendly. Luckily, for the most part we’ll only ever

by interested in the angular momentum in the z direction. Moreover, we can always just shift the coordinate

system such that the angular momentum we’re interested in orients in the z direction, if need be.

2Appendix ?? contains discussion on the Laplacian operator in different coordinate systems.
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Using L̂z, we can operate on either of the the wave functions in (15.4.5), after proper normalization:

L̂zΘ1 = −i} ∂
∂θ

[
eimlθ√

2π

]
= ml}

eimlθ√
2π

= ml}Θ1 (15.4.7)

Thus, the angular momentum for the quantum mechanical two dimensional rotor is quantized such that Lz =

±ml}, depending on the quantum number ml.

Using the quantum numbers ml = 0 ± 1,±2,±3, . . . in Equation (15.4.4) allows us to determine the

energies for the quantum mechanical rigid rotor in two dimensions. We’ll use Θ1(θ) as an example:

− }2

2µρ2
0

∂2Θ1(θ)

∂θ2
= − }2

2µρ2
0

∂2

∂θ2

[
c1e

imlθ
]

= − }2

2µρ2
0

(
−c1m2

l e
imlθ

)

=
}2m2

l

2µρ2
0

Θ1 = EΘ1

Thus, the discretized set of energies is given by

Eml =
}2m2

l

2µρ2
0

=
}2m2

l

2I
ml = 0,±1,±2,±3, . . . (15.4.8)

Importantly, note that the energy levels corresponding to ml and −ml have the same energies while the

wave functions describing these states are orthogonal. This implies that the energy levels Eml and E−ml are

degenerate.

Recall that earlier we determined that the kinetic energy of a rigid rotor in the absence of any external

forces is given by Equation (15.3.4); this equivalence must also hold for a quantum mechanical rigid rotor.

Thus, in conjunction with Equation (15.4.8) which we’ve just derived, we’re left with the relationship

}2m2
l

2I
=

1

2
Iω2

ω2 =
}2m2

l

I2

ω =
}ml

I
(15.4.9)

which is the quantization of angular velocity for the quantum mechanical rigid rotor.

A final point I’ll make about the rigid rotor is that unlike the particle in a box or the quantum mechanical

harmonic oscillator, there is no zero-point energy associated withe the quantum rigid rotor in two dimensions.

When ml = 0, the Eml = 0. This is because a zero-point energy appears only if a region of potential energy

confines the motion of a quantum particle to a limited region. Clearly, this is not the case for a rotor because

our boundary condition was periodicity and not a region in space. In any real fluid which experiences all degrees

of rotational, translational, and vibrational freedoms, the zero-point energy arises from the translational and

vibrational motions.

15.4.2 Quantum Mechanical Rotation in 3 Dimensions

To introduce nothing but complication and difficulty, we now consider the rigid rotor in three dimensions.

Similar to the case of two dimensions, the radius of rotation stays constant such that ρ = ρ0. In contrast to two

dimensions, however, zenith angle ϕ is no longer zero and is instead allowed to vary in space. This introduces

a second degree of freedom into the system, along with the freedom of the azimuthal angle θ already.

We’ll begin by writing the Schrödinger equation in spherical coordinates just as before. Suppose that the

wave function for this three dimensional rigid rotor can be written such that Ψ(ρ, θ, ϕ) = R(ρ)Y (θ, ϕ) where θ
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and ϕ are no longer decoupled. In the absence of any external forces (e.g., an external potential energy),

ĤΨ = − }2

2µ
∇2Ψn = − }2

2µ

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2

)

ρ=ρ0

= − }2

2µ

[
1

ρ2

∂

∂ρ

(
ρ2 ∂R(ρ)

∂ρ

)
+

1

ρ2 sin2 ϕ

∂2Y (θ, ϕ)

∂θ2
+

1

ρ2 sinϕ

∂

∂ϕ

(
sinϕ

∂Y (θ, ϕ)

∂ϕ

)]

ρ=ρ0

= − }2

2µρ2
0

[
1

sin2 ϕ

∂2Y (θ, ϕ)

∂θ2
+

1

sinϕ

∂

∂ϕ

(
sinϕ

∂Y (θ, ϕ)

∂ϕ

)]
= EY (θ, ϕ)

Following a little bit of algebraic gymnastics and the substitution I = µρ2
0, we can rearrange this equation to

afford

[
1

sin2 ϕ

∂2

∂θ2
+

1

sinϕ

∂

∂ϕ

(
sinϕ

∂

∂ϕ

)]
Y (θ, ϕ) = −2IE

}2
Y (θ, ϕ) (15.4.10)

Since this problem is a differential equation in two variables, our first plan of attack should be to try and write

(15.4.10) as a separable equation, such that θ and ϕ appear separately. Recall that this is possible only if the

Hamiltonian can be written Ĥ = Ĥθ + Ĥϕ. Though, it’s not immediately clear how we might go about this...

Nevertheless, we’ll postulate that the equation is separable and assert that Y (θ, ϕ) = Θ(θ)Φ(ϕ) and make this

substitution into Equation (15.4.10):

[
1

sin2 ϕ

∂2

∂θ2
+

1

sinϕ

∂

∂ϕ

(
sinϕ

∂

∂ϕ

)]
Θ(θ)Φ(ϕ) = −2IE

}2
Θ(θ)Φ(ϕ)

Φ

sin2 ϕ

∂2Θ

∂θ2
+

Θ

sinϕ

∂

∂ϕ

(
sinϕ

∂Φ

∂ϕ

)
= (15.4.11)

Dividing both side through by Θ(θ)Φ(ϕ) affords

1

Θ sin2 ϕ

∂2Θ

∂θ2
+

1

Φ sinϕ

∂

∂ϕ

(
sinϕ

∂Φ

∂ϕ

)
= −2IE

}2
(15.4.12)

and multiplying through by sin2 ϕ separates the variables:

1

Θ

∂2Θ

∂θ2
+

sinϕ

Φ

∂

∂ϕ

(
sinϕ

∂Φ

∂ϕ

)
= −2IE

}2
sin2 ϕ (15.4.13)

In this process we’ve introduced ϕ dependence on the right-hand side of the Schrödinger equation. Although

this isn’t optimal, we can still consider the nature of solutions at a constant ϕ and sample solutions to Θ. Then,

Equation (15.4.13) takes the form

1

Θ

∂2Θ

∂θ2
+ a1 = a2

for some constants a1 and a2. Combining constants and rearranging affords

∂2Θ

∂θ2
= −m2

lΘ

for some new constant m. The solutions to this equation are exactly those which we saw for the two dimensional

rigid rotor. Namely,

Θ1(θ) =
1√
2π
eimlθ & Θ2(θ) =

1√
2π
e−imlθ ml = 0, 1, 2, 3 . . . (15.4.14)

after proper normalization. Here ml is restricted to integer values because we require a single-valued wave

function.

An alternative approach to determining the functional forms of Θ(θ) and Φ(ϕ) is to rewrite Equation



232 CHAPTER 15. VIBRATIONS AND ROTATIONS OF QUANTUM MECHANICAL PARTICLES

(15.4.13) as

sinϕ

Φ

∂

∂ϕ

(
sinϕ

∂Φ

∂ϕ

)
+

2IE

}2
sin2 ϕ = − 1

Θ

∂2Θ

∂θ2

Now, both sides vary with respect to different variables. However, the equivalence must hold for all physically

plausible solutions to the wave function so that both sides must be equal to some constant:

sinϕ

Φ

∂

∂ϕ

(
sinϕ

∂Φ

∂ϕ

)
+

2IE

}2
sin2 ϕ = m2

l (15.4.15)

− 1

Θ

∂2Θ

∂θ2
= m2

l (15.4.16)

Clearly this affords the same solution to Θ(θ) as before. Equation (15.4.15), meanwhile, may be solved but is

more difficult and beyond the scope of what I care about at this time. The necessary conditions for Equation

(15.4.15) to satisfy the Schrödinger equation are

2IE

}2
= l(l + 1), l = 0, 1, 2, 3, . . .

ml = −l,−(l − 1),−(l − 2), . . . , 0, . . . (l − 2), (l − 1), l

where both l and ml are integers. The quantum number ml we’ve been introduced to before; l is another

quantum number. For a given value of l, there are 2l + 1 unique values of ml.

The logical question to ask yourself at this point is, why do two quantum numbers occur for rotation

in three dimensions? The answer lies in how the rigid rotor has two degrees of freedom, both θ and ϕ, as

mentioned earlier. Hence, two quantum numbers appear. This is the same reason that only one quantum

number n is required to characterize the particle in a one dimensional box whereas nx, ny, and nz are all

necessary to completely characterize a particle confined to a three dimensional box.

To stress the importance of both quantum numbers l and ml, the function Y (θ, ϕ) is often written

Y (θ, ϕ) = Y mll (θ, ϕ) = Θml(θ)Φ
ml
l (ϕ) (15.4.17)

where Θml is dependent on only a single quantum number where Φmll relies on both l and ml.

From the restrictions placed on l and ml we see that the energy of the rigid rotor in three dimensions

must be given by

El =
}2

2I
l(l + 1), l = 0, 1, 2, 3, . . . (15.4.18)

An interesting comparison made between the total energy of the two-dimensional and three-dimensional

rigid rotors is their dependence on quantum numbers. In the case of two dimensions, Equation (15.4.8) illustrates

that the total energy relies on only ml. In contrast, above we see that in three dimensions the total energy

relies only on l. As discussed briefly earlier, the quantum number ml is related to the angular momentum of a

quantum particle in the z direction. Also, recall from Equation (15.3.7) that the total energy (in the absence

of an external potential energy) is dependent on the magnitude of the angular momentum and is ignorant to

direction. Therefore, all 2l+ 1 quantum numbers ml which have the same value of l have the same total energy

eigenfunctions yet different values of ml. Thus, since each wave function with a different ml is orthogonal to

one another, those with the same l and different ml are degenerate eigenfunctions of the total energy operator.

In the case of two dimensions, ml represents the only angular momentum vector and therefore characterizes

the total energy of the system.3 This is in contrast to three dimensions where there are three simultaneous

angular momentum vectors in each of the three coordinate directions. Hence, the magnitude of the total angular

3This goes back to what I mentioned earlier in that no matter what the orientation of our rigid rotor is we can always align
the coordinate axes such that the direction of the angular momentum is in the z direction. The important takeaway for this point,
though, is that in two dimensions there is a single angular momentum vector, point out of the plane of rotation.
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momentum (which encapsulates the angular momentum in all three directions) is necessary to capture the total

energy of the rigid rotor in three dimensions.

15.4.3 The Spherical Harmonics

Spherical harmonic functions are special functions defined on the surface of a sphere; they form a complete

set of orthogonal functions and thus an orthonormal basis. The spherical harmonics themselves originate from

solve Laplace’s equation, ∇2f = 0 for some scalar field f , in spherical coordinates, hence the name. If we take

the scalar field of interest to be a wave function Ψ, Laplace’s equation becomes

∇2Ψ =
∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2

=
1

ρ2

∂

∂ρ

(
ρ2 ∂Ψ

∂ρ

)
+

1

ρ2 sin2 ϕ

∂2Ψ

∂θ2
+

1

ρ2 sinϕ

∂

∂ϕ

(
sinϕ

∂Ψ

∂ϕ

)

which is exactly the functional form of the Schrödinger equation for the quantum mechanical rigid rotor, up to

a constant.

If we write the wave function for the three-dimensional quantum mechanical rotor as Ψ = R(ρ)Y (θ, ϕ),

as we saw in the previous section, the angular component of the wave function may be written as Y (θ, ϕ) =

Θ(θ)Φ(ϕ) and each of Θ and Φ may be solved. The solution to Θ is presented in Equation (15.4.14). The

solutions to Φ may also be determined, although finding an expression involves a lot more math than is necessary.

So, some solutions to Y mll (θ, ϕ) are presented below without justification:

Y 0
0 (θ, ϕ) =

(
1

4π

)1/2

Y 0
1 (θ, ϕ) =

(
3

4π

)1/2

cosϕ

Y ±1
1 (θ, ϕ) =

(
3

8π

)1/2

e±iθ sinϕ

Y 0
2 (θ, ϕ) =

(
5

16π

)1/2

e±iθ(3 cos2 ϕ− 1)

Y ±1
2 (θ, ϕ) =

(
15

8π

)1/2

e±iθ sinϕ cosϕ

Y ±2
2 (θ, ϕ) =

(
15

32π

)1/2

e±2iθ sin2 ϕ

As we saw earlier in the solutions to Θl(θ), the solutions to this function are periodic. The ϕ dependence

enters as a polynomial in sine and cosine. The constant factor in front of each expression is a normalizing

constant. For instance, Y 0
0 (θ, ϕ) has a normalizing constant of 1/

√
4π. So, we can deduce that the integral

of (Y 0
0 )2dθdϕ over all θ and ϕ without normalization goes to 4π which is exactly the surface area of the unit

sphere. In other words, Y 0
0 corresponds to an s orbital.

Notice that unless ml = 0, the spherical harmonics are complex functions. So, it is customary to instead

form linear combinations of Y mll to generate real functions which can be plotted and visualized. The following

are descriptions of the p and d orbitals for hydrogen, illustrated as linear combinations of the spherical harmonics
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and as functions of θ and ϕ.

px =
Y 1

1 + Y −1
1√

2
=

(
3

4π

)1/2

sinϕ cos θ

py =
Y 1

1 − Y −1
1

i
√

2
=

(
3

4π

)1/2

sinϕ sin θ

pz = Y 0
1 =

(
3

4π

)1/2

cos θ

The wave functions for the p orbitals form a set of mutually orthogonal dumbbells, each of which has the

same amplitude but a different sign (positive or negative) for the two lobes. Also, each wave function has a

nodal plane corresponding to the plane which is normal to the axis aligned with the dumbbell. Intuitively, the

presence of this plane should make sense when we think of the orbitals in the context of angular momentum,

as we’ve been doing. We can always deduce the z component of the angular momentum, as we’ve already

discussed, and if the angular momentum vector lied in any one of the coordinate planes we would be able to

deduce an exact value for another component of the vector. Then, we would know two components of the

angular momentum vector which is in direct violation of the uncertainty principle.

dz2 = Y 1
2 =

(
5

16π

)1/2

(3 cos2 ϕ− 1)

dxz =
Y 1

2 + Y −1
2√

2
=

(
15

4π

)1/2

sinϕ cosϕ cos θ

dyz =
Y 1

2 + Y −1
2

i
√

2
=

(
15

4π

)1/2

sinϕ cosϕ sin θ

dx2−y2 =
Y 2

2 + Y −2
2√

2
=

(
15

16π

)1/2

sin2 ϕ cos 2θ

dxy =
Y 2

2 + Y −2
2

i
√

2
=

(
15

16π

)1/2

sin2 ϕ sin 2θ

The d orbitals have more complex wave functions and therefore more complex three-dimensional shapes.

In contrast to the p orbitals, there are two nodal planes separating these lobes in four of the five d orbitals,

the exception being the orbital which is aligned with the z axis (dz2). The introduction of more nodal planes

arises because l is larger for the d orbitals than for the p orbitals. This is similar to the particle in a box model

where increasing the quantum number n introduced more nodes to the wave function of the particle.

15.5 Quantization of Angular Momentum

Here we continue the discussion on the quantum mechanical rigid rotor in three dimensions, this time in the

context of angular momentum rather than energy. As we’ve seen time and time again, angular momentum is

incredibly important in quantum chemistry. For example, the s, p, and d electrons depend on the quantum

numbers l and ml, which we’ve seen are directly related to the angular momentum.

As we saw earlier in Equation (15.4.7), the wave function for a two dimensional rigid rotor is an eigen-

function of the angular momentum operator L̂z. It is not difficult to show that the wave function for the three

dimensional rigid rotor enjoys the same properties. Because the potential energy of a free rotor is zero, the

total energy stored in the rotor is given by Equation (15.3.7), written

E =
|~l|2
2I

for an angular momentum vector ~l and moment of inertia I. Since E and ~l2 differ by only a constant, 1/2I,
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the corresponding operators Ĥ and l̂2, differ by only a constant as well. Thus, Ĥ and l̂2 share a common set

of eigenfunctions and therefore commute, i.e., we can know both the total energy and angular momentum of a

particle simultaneously and exactly.

Recall from Equation (15.4.18) that the total energy of the quantum mechanical rigid rotor in three

dimensions is E = }2

2I l(l + 1) which implies that ĤY mll = }2

2I l(l + 1)Y mll . Using the proportionality mentioned

a moment ago, we can immediately write,

l̂2Y mll (θ, ϕ) = }2l(l + 1)Y mll (θ, ϕ) (15.5.1)

illustrating that the quantum numbers l and ml are defining indices for the eigenfunctions of Ĥ and l̂2. That

is, l and ml explicitly determine the functional form and energy of the wave function.

Since the eigenvalues of l̂2 are }2l(l+ 1), the only observable quantities for |~l|2 are }2l(l+ 1) and therefore

the magnitude of the angular momentum is quantized such that |~l| = }
√
`(`+ 1).

Importantly, note that the operators l̂2 and Ĥ commute, not l̂ and Ĥ. Considering the operator l̂ in

three dimensions, it may be written l̂ = (l̂x, l̂y, l̂z). The functional form of these operators are listed above for

cartesian coordinates. The corresponding operators in spherical coordinates are

l̂x = −i}
(
− sin θ

∂

∂ϕ
− cotϕ cos θ

∂

∂θ

)
(15.5.2)

l̂y = −i}
(

cos θ
∂

∂ϕ
− cotϕ sin θ

∂

∂θ

)
(15.5.3)

l̂z = −i} ∂
∂θ

(15.5.4)

Also, the commutators between each of these three operators are cyclic:

[l̂x, l̂y] = i}l̂z
[l̂y, l̂z] = i}l̂x
[l̂z, l̂x] = i}l̂y

Thus, we can never know more than one of the components of the angular momentum vector simultaneously and

exactly. So, the direction of the angular momentum vector can never be known exactly. Considering Equation

(15.5.4), however, we find that the angular momentum in the z direction may be computed with relative

ease since it depends only on the variable θ. Performing this operation on the wave function Y mll (θ, ϕ) =

Θml(θ)Φ
ml
l (ϕ) and using the result for Θ from Equation (15.4.14), we have

l̂zY
ml
l (θ, ϕ) =

(
−i} ∂

∂θ

[
1√
2π
eimlθ

])
Φmll (ϕ)

=
}ml√

2π
eimlθΦmll

= }mlΘlΦ
ml
l = }mlY

ml
l (θ, ϕ) (15.5.5)

and therefore Y mll (θ, ϕ) are eigenfunctions of the operator l̂z.

We’ve seen that the wave functions Y mll (θ, ϕ) are eigenfunctions of all of Ĥ, l̂2, and l̂z. Therefore, all

three of these operators share a common set of eigenfunctions and all three of these quantities commute and

their eigenfunctions can be known exactly and simultaneously. In other words, the total energy, magnitude of

the angular momentum, and z component of the angular momentum vector can be known simultaneously. So,

we can know the length of the angular momentum vector and one of its components (the z component), but

the other two components (the x and y directions) remain a mystery. Stated more concisely, the length and

direction of the angular momentum cannot be known simultaneously.

In Equation (15.5.1) we saw that the magnitude of the angular momentum vector is |~l| = }
√
`(`+ 1). In
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Equation (15.5.5) we found that the magnitude of the angular momentum in the z direction is lz = ml}. Since

lz is known exactly, we require that the angular momentum vector ~l not lie along the z axis. If this were the

case, the x and y components of the angular momentum would be zero and therefore known which is in direct

contradiction to the uncertainty principle.

The uncertainty in the x and y components of the angular momentum give rise to what is known as

the vector model of angular momentum, a model which provides information about all possible values of the

quantum number ml for a given value of l. A depiction of this model is shown in Figure 15.4.

Knowing the magnitude of the angular momentum vector allows all of the x, y, and z components of the

vector to vary in a way that constrains the position of the vector to defining the surface of a sphere. Knowing the

orientation of the vector in the z direction, however, and remembering that angular momentum is quantized,

limits these surfaces to being conical.

We can rationalize these three-dimensional results more concretely by doing some math. For instance,

suppose that the magnitude of the angular momentum is known for a given value of l such that |~l|2 = }2l(l+1).

With no further knowledge about the components of the vector, we know immediately that

|~l|2 = }2l(l + 1) = l2x + l2y + l2z (15.5.6)

which is the equation of a sphere of radius }2l(l+ 1). Now, further suppose that we measure the z component

of the angular momentum and determine that l2z = }2m2
l so that we can rewrite Equation (15.5.6) as

|~l|2 − l2z = l2x + l2y

}2l(l + 1)− }2m2
l = l2x + l2y (15.5.7)

}
√
l(l + 1)−m2

l =
√
l2x + l2y (15.5.8)

where (15.5.7) defines the circle at the apex of the cone and (15.5.8) defines the conical surface seen in Figure

15.4. The surface is defined in the second equation because l2x and l2y are completely unknown and therefore can

take on any values which satisfy quantization and Equation (15.5.8). Figure 15.4 also provides some intuition

for the correspondence principle; for any given value of the quantum number l, there are 2l + 1 values of ml

and therefore the number of cones increases linearly with l. For large enough l, the cones get closer and closer

until merging into a sphere, as we would see in the classical case, as mentioned above.

The quantization of the z component of the angular momentum gives rise to spatial quantization, the

phenomenon whereby the angular momentum vector can take on only certain orientations in space.
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Figure 15.4: The vector model of angular momentum for the quantum number l = 2. The z component of the
angular momentum is shown in units of }. The conical shape results from knowing the magnitude of the angular
momentum and one of the components of the angular momentum vector while the other two components remain
completely unknown.
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Rotations

- Scientist

Spectroscopy may be considered the primary application of quantum mechanics. It is the study of interaction

between matter and electromagnetic radiation as a function of frequency or wavelength. Nuclear magnetic

resonance (NMR), infrared (IR), and Raman spectroscopy are all common tools used by scientists to characterize

and visualize the atomic and molecular structure of matter.

Spectroscopic techniques are based upon the transitions between energy states of molecules when they

interact with electromagnetic radiation. In particular, because quantum mechanical maintain a discrete energy

spectrum, absorption and emission spectra are composed of individual peaks, each of which is associated with

a specific transition between two energy levels. As we saw way back in Section 10, energy which is absorbed or

emitted by a quantum mechanical system is quantized in units of hν for some frequency ν. That is, the energy

level spacing between E2 and E1 is E2 − E1 = hν.

The spacing between energy levels is smallest for NMR spectroscopy, followed by rotational spectroscopy

and then vibrational spectroscopy, and lastly electronic spectroscopy which has measures systems with very

large spacings between energy levels. These types of spectroscopy use electromagnetic radiation in the form or

radio waves, microwaves, infrared, and visible light and beyond, respectively.

As we’ll see, not all transition between energy levels may occur, i.e., a transition from Ej to Ei may not

be allowed. Selection rules will tell us which transitions will be experimentally observed.

16.1 Absorption, Spontaneous Emission, and Stimulated Emission

Absorption, spontaneous emission, and stimulated emission are the basic processes by which transitions between

energy levels may occur. Absorption and stimulated emission are initiated by photons from an some external

electromagnetic radiation. In contrast, spontaneous emission is a random event related to the lifetime of the

excited state (as the name implies). By the uncertainty principle we know that energy and time are conjugate
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variables so that ∆E∆t ≥ }/2. So, for spectroscopic techniques which operate at lower frequencies on the

electromagnetic spectrum, the change in energy required to initiate the transition is lower and therefore the

lifetime in the excited state is higher. That is, when ∆E gets smaller ∆t must get larger to compensate.

Spontaneous emission and stimulated emission differ in a very important respect. Since spontaneous

emission is a completely random process, the emitted photons are incoherent, meaning that their phase angles

are completely random. In contrast, the photons of stimulated emission are coherent and propagate in the same

direction as the photons which caused excitation in the first place. For example, a light bulb is an incoherent

source of photons and the intensity of the emitted light falls of with the square of the distance from the source.

In contrast, a laser is a coherent source of radiation and is the reason that lasers can maintain such high

intensity even when reflected from a very far distance, such as the windows of a plane.

Models for the three types of transitions are shown in Figure 16.1. B12, B21, and A21 represent pro-

portional constants for absorption, stimulated emission, and spontaneous emission, respectively. Each of the

transitions is directly proportional to the radiation density ρ(ν) as a function of the incident frequency ν of

the electromagnetic radiation, as well as the population of the energy level, N1 for E1 and N2 for E2. The

proportionality with population of the energy state should make sense: if there are no atoms or molecules in

the E1 state then there is no way for a atom or molecule to be excited to the E2 state, for example.

Figure 16.1: Model for absorption, spontaneous emission, and stimulated emission. The rate at which transitions
between levels occurs is directly proportional to the population of the energy levels, N1 and N2 for absorption
and emission, respectively, and the radiation density as a function of frequency, ρ(ν).

At equilibrium, the transition rate between the energy levels must be equal such that

B12N1ρ(ν) = B21N2ρ(ν) +A21N2 (16.1.1)

Moreover, the ratio of the populations in either energy level should follow a Boltzmann distribution, defined in

Equation (10.8.3), such that

N2

N1
=
g2

g1
e−|E2−E1|/kBT = e−hν/kBT

where g2 and g1 are degeneracies of each state and taken to be equal because in our example there is no

preference to be in either energy level. Note that under the assumption that neither energy level is preferred
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over the other we can deduce that B12 = B21. Then, we can rewrite Equation (16.1.1) as

N1

N2
=
B21ρ(ν) +A21

B12ρ(ν)
(
e−hν/kBT

)−1

=
B21

B12
+

A21

B12ρ(ν)

ehν/kBT = 1 +
A21

B12ρ(ν)

A21 =
(
ehν/kBT − 1

)
B12ρ(ν)

Here, recall the Planck distribution law for blackbody radiation, derived in Equation (10.3.2). We can substitute

this result for the radiation density in the expression above:

A21

B12
=
(
ehν/kBT − 1

)(8πh

c3
ν3

ehν/kBT − 1

)

A21

B12
=

8πhν3

c3
=

16π2}ν3

c3
(16.1.2)

Equation (16.1.2) offers a ratio of the rate of spontaneous emission to absorption. This relationship will have

implications in the lifetimes of excited states. Note that since B12, B21, and A21 are effectively rate constants,

their inverses define a lifetime. So, since A21 ∼ ν3, the lifetime of the excited state is T ∼ 1/ν3.

16.2 Selection Rules

All types of spectroscopy have selection rules which govern the allowed transitions that can occur between

different energy levels. The transition dipole moment, denoted µmn, is used to determine whether transitions

are allowed under an electric dipole interaction. Just as we think of a dipole moment as being the permanent

separation of charge within a molecule, the transition dipole moment is the separation of charge within a

molecule associated with the transition between two states. In general, µmn is a complex vector whose direction

gives the polarization of the transition and whose magnitude squared gives the strength of interaction with a

source of electromagnetic radiation.

The transition dipole moment satisfies the condition

µmn(x) =

∫ ∞

−∞
ψ∗m(x)µx(xe + x)ψn(x)dx 6= 0 (16.2.1)

where x is the vibrational amplitude and µx is the dipole moment along the direction of the electric field, in

which the x direction is chosen here. Since the dipole moment of a molecule varies with vibrations, there is

both a permanent dipole, µ0, (granted, it might be zero) and dynamic dipole, µ(x), within any molecule of

spectroscopic interest. Since the amplitude of vibration is a periodic function of x, by Taylor’s theorem we can

expand µ(x) into a power series centered at the equilibrium bond length xe. Also, because x is the vibrational

amplitude, xe corresponds to a displacement of zero:

µmn(xe + x(t)) = µ0 + [x(t)− xe]
(
dµx
dx

)

x=0

+ [x− xe]2
(
d2µx
dx2

)

x=0

+ . . .

= µ0 + x(t)

(
dµx
dx

)

x=0

+ x2(t)

(
d2µx
dx2

)

x=0

+ . . .
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Substituting Equation (16.2.1) into this expression affords

µmn(xe + x(t)) =

∫ ∞

−∞
ψ∗m(x)µ0ψn(x)dx

+

∫ ∞

−∞
ψ∗m(x)

[
x

(
dµx
dx

)

x=0

]
ψn(x)dx

+

∫ ∞

−∞
ψ∗m(x)

[
x2

(
d2µx
dx2

)

x=0

]
ψn(x)dx+ . . .

In most adsorption experiments, it is reasonable to assume that only the n = 0 energy level is populated. So,

we’ll now consider the transition dipole moment from the ground state n = 0 to some excited state m = m.

Using Equation (15.2.3), which offers the wave functions for the quantum mechanical harmonic oscillator, we

can rewrite this expression for a quantum mechanical harmonic oscillator as

µm0(xe + x(t)) =

∫ ∞

−∞

(
AmHm(α1/2x)e−αx

2/2
)
µ0
(
A0H0(α1/2x)e−αx

2/2
)
dx

+

(
dµx
dx

)

x=0

∫ ∞

−∞

(
AmHm(α1/2x)e−αx

2/2
)
x
(
A0H0(α1/2x)e−αx

2/2
)
dx+ . . .

= µ0AmA0

∫ ∞

−∞
Hm(α1/2x)H0(α1/2x)e−αx

2

dx

+AmA0

(
dµx
dx

)

x=0

∫ ∞

−∞
Hm(α1/2x)xH0(α1/2x)e−αx

2

dx+ . . . (16.2.2)

The series above was truncated at the quadratic term because the contributions to the transition dipole moment

beyond that are negligible. The first integral in the expression is zero because the Hermite polynomials are

orthogonal. Therefore, their product over an integral of all the real numbers is zero. Thus, the permanent dipole

moment of a molecule is not relevant for the absorption of infrared radiation. Because the dynamic dipole is

all that contributes to infrared excitation, homonuclear diatomic molecules do not absorb infrared radiation.

The second integral will be zero if the same condition is met. Since we are integrating over a symmetric

interval in the second term, the sum will evaluate to zero if and only if the integrand is an odd function in x,

that is, it’s asymmetric. As mentioned earlier when the Hermite polynomials were introduced, the Hn(u) is

an odd function for odd n and an even function for even n. Hence, the second integral above contains an odd

integrand if and only if Hm is an even function which requires that m be even. The condition introduced in

Equation (16.2.1) requires that the transition dipole moment be nonzero in order for a spectroscopic transition

to occur and therefore the allowed transitions are those for which m is odd in Equation (16.2.2).

Thus, only transitions of the kind n = 0 → m = 2k + 1 for k = 0, 1, 2, . . . will afford nonzero transition

dipole moments and therefore allow for an energy level transition.

There’s a catch, however. If we analyze the integrands of HmxH0 more closely in Equation (16.2.2), we

find that the area under these curves is nonzero only for the case of m = 1. Figure (16.2) illustrates this point.

It can be shown most generally that the selection rule is ∆n = ±1 for absorption and emission, respectively.

16.3 Vibrational Spectroscopy

In any type of spectroscopy, transitions occur between adjacent energy levels. At room temperature, the number

of molecules in the vibrational ground state far exceeds the number molecules in the first vibrational excited

state so that the primary transition observed is that from the n = 0 level to the n = 1 level. This corresponds

to an ∆n = +1 transition.

The high sensitivity of modern instrumentation, however, allows us to carry out vibrational spectroscopic

experiments for ∆n = +2,+3, . . . transitions. These overtone transitions are useful because they allow us to

determine the extent to which the anharmonic potential of a quantum mechanical oscillator differs the harmonic
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Figure 16.2: The integrand HmxH0 graphed for m = 1, 3, and 5. The dashed line indicates zero.

potential of a classical oscillator. A common and fair approximation for the anharmonic potential is describe

by the Morse potential,

V (x) = De

[
1− e−α(x−xe)

]2
(16.3.1)

where xe is the displacement at equilibrium, De is the dissociation energy relative to the bottom of the potential

and α =
√
k/(2De) is a constant dependent on the force constant k. The Morse potential introduces a new

term to the total energy of a quantum mechanical oscillator such that Equation (15.2.6) may be rewritten as

E = hν

(
n+

1

2

)
− (hν)2

4De

(
n+

1

2

)2

(16.3.2)

where the second term corrects for the anharmonic potential energy. The selection rule ∆n = +1 is not

rigorously followed for an anharmonic potential so that transitions of ∆n = +2,+3, . . . can be observed from

the n = 0 ground state. These overtone transitions are much weaker than the n = 0 → n = 1 transition but

can be measured with sensitive enough instrumentation.

16.4 Rotational Spectroscopy

As for the quantum harmonic oscillator, the selection rule ∆J = ±1 governs the absorption of electromagnetic

radiation for the quantum mechanical rotor. Importantly, note that the quantum number l is being represented

as J here. l usually denotes the orbital angular momentum in three dimensions whereas J is used for the

angular moment of rotating molecules, those restricted to two dimensions.

In contrast to vibrational spectroscopy which requires that a molecule have a dynamic dipole, a permanent
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dipole is required for a molecule to absorb energy in the microwave portion of the electromagnetic spectrum

and therefore be rotationally excited. As we saw in Equation (15.4.18) in the Section regarding the three-

dimensional quantum rigid rotor, the dependence on the energy of the quantum rotor on the quantum number

J (formerly known as l) may be written

EJ =
}2

2I
J(J + 1) =

}2

2µρ2
0

J(J + 1) =
h2

8π2µρ2
0

J(J + 1) = hcBJ(J + 1) (16.4.1)

where B = h/(8π2cµρ2
0) is the rotational constant and is dependent on the reduced mass µ and radial distance

between the atoms ρ0. The factor of c (the speed of light) is included in B to give it units of cm−1 rather than

s−1, similar to the wave number ν̃ used in infrared spectroscopy.

We can begin a discussion on rotational spectroscopy by first considering the spacings between energy

levels. For a transition from energy level J to J + 1,

∆E = EJ+1 − EJ
= hcB(J + 1)(J + 2)− hcBJ(J + 1)

= hcB
(
J2 + 3J + 2− J2 − J

)

= hcB (2J + 2)

= 2hcB (J + 1) (16.4.2)

Thus, we see that the energy gap between allowed absorptions is E ∼ (2J+1)B with a proportionality constant

of hc. The inclusion of B in this proportionality is to reinforce the point that B is molecule specific since it

depends on the reduced mass and bond length of the diatomic.

Now we consider the change in energy during emission, from energy level J to J − 1:

∆E = EJ−1 − EJ
= hcB(J − 1)J − hcBJ(J + 1)

= hcB
(
J2 − J − J2 − J

)

= −2hcBJ (16.4.3)

Thus, the energy gap between allowed emissions is |E| ∼ 2BJ with the same proportionality constant as above.

Note that the difference in energy between absorption and emission are different because energy levels are not

equally spaced.

Since the energy required for absorption is greater than that of emission, the naive student may assume

that the majority of the molecules in a collection occupy energy levels corresponding to smaller values of J .

So, we can ask ourselves, how many molecules are there in states for a given value of J relative to the grounds

state J = 0? To get an idea of the answer we can use the Boltzmann distribution:

nJ
n0

=
gJ
g0
e−(EJ−E0)/kBT = (2J + 1)e−}

2J(J+1)/(2IkBT ) (16.4.4)

Here, nJ and n0 represent the number of particles in the Jth excited state and the ground state, respectively,

and gJ and g0 are their respective degeneracies. We take E0 to be the zero point energy and therefore the

difference EJ−E0 becomes the energy of the Jth energy level. Lastly, Equation (15.4.18) was used to substitute

an expression for the energy levels within the exponential.

Most importantly, the degeneracy of the rotational ground state energy is 1, whereas the degeneracy of

energy level J is always 2J + 1. This degeneracy term generally dominates the ratio nJ/n0 for small J and

sufficiently large temperatures. As J increases, however, the exponential term causes nJ/n0 to rapidly decrease.

Additionally, for molecules with a large enough moment of inertia the exponential term does not heavily

influence the ratio until J is quite large. As a result, many rotational energy levels are occupied. In contrast,
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molecules with a small moment of inertia tend to populate far fewer rotational energy levels because the

exponential term of Equation (16.4.4) has a greater influence on the ratio nJ/n0. A plot of the Boltzmann

distribution for different temperatures is shown in Figure 16.3.

Figure 16.3: A plot of the Boltzmann distribution for CO2 for the occupation of rotational energy levels
corresponding to the quantum number J for different temperatures.

For a microwave spectroscopy experiment, we’d expect the relative absorption of each of the energy states

to follow a patter similar to that of Figure 16.3 above. This spectrum is illustrated below, in Figure 16.4.

Figure 16.4: The spectrum observed through microwave radiation of CO2. The shape of this spectrum behaves
similarly to that of Figure 16.3 which delineates the relative occupation of each energy level.

16.5 Rotational Spectroscopy
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Hydrogen

- Scientist

The hydrogen atom serves as a prototype for more complex atoms and, therefore, molecules. Firstly, the

wave functions of an electron within a hydrogen atom, also known as a hydrogen atomic orbital, will be studied

and we’ll see that the familiar set of orbitals studied in general chemistry arise naturally as solutions to the

Schrödinger equation.

17.1 The Schrödinger Equation for Hydrogen

For atoms with more than a single electron, the Schrödinger equation cannot be solved exactly. In contrast,

the wave function which describes the electron of hydrogen can be determined exactly and serves as a starting

point to try and find (near) exact solutions for the Schrödinger equation describing many electron atoms.

We can begin by modeling a hydrogen atom as having a nucleus at the center of some coordinate system

and an electron moving about space around the nucleus. The two particles are attracted to one another with

a potential energy given by the Coulombic potential,

V (r) = − q2
e

4πε0r
= −kq

2
e

r

where qe is the charge of an electron (and a proton, hence q2
e cause the total charge is the product of the

charge on the electron and the proton), ε0 is the permittivity of a vacuum, r is the radial distance between

the two particles, and k = 1/4πε0 is a constant to make things more neat.1 Since this potential is spherically

symmetric we’ll formulate the Schrödinger Equation in spherical coordinates. In doing so, we arrive at the

1The factor of 4πε0 arises in this expression because units of all quantities are chosen to be in SI.
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following expression for the Schrödinger equation:

− }2

2me
∇2ψ(ρ, θ, ϕ) + V (r)ψ(ρ, θ, ϕ) = Eψ(ρ, θ, ϕ)

− }2

2me

[
1

ρ2

∂

∂ρ

(
ρ2 ∂ψ

∂ρ

)
+

1

ρ2 sin2 ϕ

∂2ψ

∂θ2
+

1

ρ2 sinϕ

∂

∂ϕ

(
sinϕ

∂ψ

∂ϕ

)]
+ V (r)ψ = Eψ (17.1.1)

Note that ρ is the radial distance between the electron and the nucleus, θ is the polar (azimuthal) angle, and ϕ

is the zenith angle. While (17.1.1) appears unwieldy at first glance, we can bring it into a more manageable and

even recognizable form with a little bit of ingenuity. Firstly, multiply through by a factor of 2meρ
2 to afford

−}2 ∂

∂ρ

(
ρ2 ∂ψ

∂ρ

)
− }2

[
1

sin2 ϕ

∂2ψ

∂θ2
+

1

sinϕ

∂

∂ϕ

(
sinϕ

∂ψ

∂ϕ

)]
+ 2meρ

2 [V (r)− E]ψ = 0 (17.1.2)

which is more clearly an equation with two principle components, one with a dependence on only ρ and the

other with a dependence on θ and ϕ. Recall that we define the operator L̂2 as

L̂2 = −}2

[
1

sin2 ϕ

∂2ψ

∂θ2
+

1

sinϕ

∂

∂ϕ

(
sinϕ

∂ψ

∂ϕ

)]

which is exactly what we see in (17.1.2) so that it can be rewritten as

−}2 ∂

∂ρ

(
ρ2 ∂ψ

∂ρ

)
+ L̂2ψ + 2meρ

2 [V (r)− E]ψ = 0 (17.1.3)

Additionally, we know that solutions to ψ can be written as a product of functions, namely ψ = R(r)Θ(θ)Φ(ϕ),

and that the angular portion of ψ must be a spherical harmonic of the form Y mll (θ, ϕ), defined earlier. Recall

that Y mll (θ, ϕ) is an eigenfunction of the operator L̂2 and satisfies

L̂2Y mll (θ, ϕ) = }2l(l + 1)Y mll (θ, ϕ)

Ultimately, then, if we substitute ψ = R(r)Θ(θ)Φ(ϕ) into (17.1.3), we can rewrite the expression as

− }2

2meρ2

∂

∂ρ

(
ρ2 ∂R(ρ)

∂ρ

)
+

[
}2l(l + 1)

2meρ2
+ V (r)− E

]
R(ρ) = 0 (17.1.4)

which is known as the radial equation for the hydrogen atom. Substituting the Coulomb potential for V (ρ)

above, the radial equation becomes

− }2

2meρ2

∂

∂ρ

(
ρ2 ∂R(ρ)

∂ρ

)
+

[
}2l(l + 1)

2meρ2
− kq2

e

ρ
− E

]
R(ρ) = 0

− }2

2meρ2

∂

∂ρ

(
ρ2 ∂R(ρ)

∂ρ

)
+ [Veff(ρ)− E]R(ρ) = 0 (17.1.5)

where we define the effective potential as

Veff(ρ) =
}2l(l + 1)

2meρ2
− kq2

e

ρ
(17.1.6)

The effective potential is made up of two components: a centrifugal potential which varies as +1/r2 and a

coulombic potential which varies as −1/r. The centrifugal potential is positive and corresponds to a repulsive

interaction between the electron and nucleus within a hydrogen atom; it dominates at small distance if l 6= 0,

that is, for all orbitals aside from the s orbitals. In contrast, the coulombic potential is negative and is

associated with attractive interactions. Although both terms within the effective potential go to zero as the

distance between the electron and proton go to infinity, the coulombic potential decreases less quickly so that

there is minimum effective potential which corresponds to the most probable distance between the electron and



17.1. THE SCHRÖDINGER EQUATION FOR HYDROGEN 247

nucleus within a hydrogen atom. A plot of the effective potential as a function of the distance between the

nucleus and electron is illustrated in Figure 17.1.

Distance from Nucleus

E
ne

rg
y

Centrifugal Force

Coulombic Force

Effective Potential

Figure 17.1: Plot of the centrifugal, coulombic, and effective potentials. As is clear, the centrifugal force
dominates at smaller interatomic distances while the coulombic potential at larger distances.

17.1.1 Eigenvalues and Eigenfunctions of the Hamiltonian

Equation (17.1.4) has the direct physical interpretation that the total energy E is the sum of the radial kinetic

energy, an angular kinetic energy, and a potential energy. This expression is a first order differential equation

which affords the following solution for the total energy:

En = − meq
2
e

8ε2h2n2
, n = 1, 2, 3, 4, . . . (17.1.7)

This quantity is typically rewritten using the Bohr radius (Section 10.5, Equation (10.5.6)), aB = ε0h
2/πmeq

2
e

to yield

En = − meq
2
e

8ε2h2n2
= −2.179× 10−18 J

n2
= −13.6 eV

n2
, n = 1, 2, 3, 4, . . .

In any case, the wave function for the hydrogen atom goes to zero as n → ∞ as we’d expect. As a

reminder, the zero energy is more of a convention than an actual quantity. Note that although the energy

depends only on the principle quantum number n, the eigenfunctions ψn are associated with three quantum

numbers, n, l, and ml, to accommodate spatial quantization in three dimensions.

Just as we’ve done previously, the energy eigenvalue and corresponding eigenfunctions of the total energy

operator can be superimposed onto a potential energy diagram to see how the wave function changes with

increasing quantum number n. The potential energy forms a region of confinement for the particles (similar to

the box for a particle in a box) which is infinitely deep at the center and whose depth falls off inversely with

the distance between the proton and electron.
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Figure 17.2: Pff

17.2 The Hydrogen Atomic Orbitals

The ground state wave function for the hydrogen atom, corresponding to the 1s orbital, may be expressed as

ψ100(r) =

(
1√
π

)(
Z

aB

)3/2

e−Zr/aB (17.2.1)

where Z is the effective nuclear charge of that atom and equal to 1 for hydrogen and aB is the Bohr radius

and is constant, in particular aB = 52.9 pm. Since r =
√
x2 + y2 + z2 is a function of three variables, a plot of

ψ100(r) lives in R4 and therefore we would need four dimensions to visualize the surface. Instead, we reduce
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the dimensionality of the graph by considering a level set of ψ100. Doing this, we can see clearly that the wave

function is maximized at r = 0 (although, note that the distance between the electron and nucleus of hydrogen

will never actually reach zero by the uncertainty principle) and falls off exponentially as r →∞.

Now, suppose we increase the principle quantum number n and consider the 2s and 3s orbitals of hydrogen.

With l = 0 remaining constant, the electron wave function remains a function of only r and we can ignore θ and

ϕ. In contrast to the 1s orbital, however, the 2s and 3s orbitals contain 1 and 2 nodes, respectively. Moreover,

since these nodes correspond to particular (constant) values of r, they represent spherical nodal surfaces, rather

than nodal points.

Before continuing to the next section, below is the general form of the hydrogen wave function for any

combination of quantum numbers n and l:

ψnl(r) = Rnl(r) = −
{(

2Z

naB

)3
(n− l − 1)!

2n[(n+ l)!]3

}1/2(
2Zr

naB

)l
L2l+1
n+l (2Zr/naB)e−Zr/naB (17.2.2)

Note that Z = 1 for the hydrogen atom and that Lpq(x) is the associated Laguerre polynomial.

17.2.1 The Radial Distribution

Above we began to consider the behavior of wave functions with no angular momentum component, that is,

the s orbitals. If we consider the eigenfunctions of the Hamiltonian for a one electron atom with l > 0, we can

begin to understand the differences between the s orbitals and the p and d orbitals.

Analogous to the s orbitals, the p and d orbitals are best visualized with contour plots, and in particular,

contour plots at constant angles for θ and ϕ. It can be shown that the radial component of the energy

eigenfunctions for this system have n− l−1 nodes while the angular component has l nodes, for a total of n−1

nodes, consistent with our models for the particle in a box and the harmonic oscillator.

Continuing with a discussion about orbitals involving nonzero values of the quantum number l, we consider

the probability density ψ2
nlml

(r, θ, ϕ). As a brief aside, and partial sanity check, for the s orbital we know already

that the probability density will be spherically symmetric and decrease exponentially with the distance from

the nucleus. A plot of the eigenfunction in many different ways, each beneficial in their own respect, can be

found in Figure 17.3.

It’s important to keep in mind that ψ2, no matter the quantum numbers, is normalized. The normalization

integral of ψ2 must be interpreted as the sum of all electronic charges of all shells of infinitesimal thickness dr

around the nucleus. So, instead of just thinking about ψ2 as the probability of finding an electron anywhere

in space around the nucleus, we should be thinking about ψ2dv as the probability of finding an electron in a

small region of space around the nucleus. For a spherically symmetric function, dv = 4πr2dr so that the radial

probability distribution for the ground state electron of a hydrogen atom is

P (r)dr = 4πr2ψ2
100(r)dr (17.2.3)

The advantage of this distribution is that it accounts explicitly for both the charge density and the volume of

the electron cloud. Consider, for example, the juxtaposition of the plots in Figure 17.4. Both plots in 17.4a

and 17.4b contain two normalized wave functions, though, the latter more clearly illustrates how no matter the

atom, the area under the curve is equal to one. Also, with the radial distribution we can more easily pick out

the most probable distance away from the nucleus for an electron to be (it’s where the distribution peaks).

Figure 17.4 displays only the n = 1 s orbitals for H and He+. To get a vague idea of the radial distribution

function for principle quantum numbers greater than 1, consider the redial distribution for the 2s orbital of a
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Figure 17.3: (a) ψ100(r) plotted against x for a constant y and z. (b) A scatter plot of the electron cloud
corresponding to the same plot as in (a). (c) The spherical level set of ψ100 for a constant r such that 95%
of the probability is enclosed within the shell. (d) The magnitude of ψ100 plotted as the height above a plane
through the nucleus. (e) A contour plot showing the projections of lines obtained from a plot like that of (d)
when it is cut by a series of equally spaced planes parallel to the projection plans.

(a) Probability distributions for H and He+. (b) Radial distributions for H and He+.

Figure 17.4: Difference between the probability distribution and radial distribution for two different one electron
systems.

single-electron system:

P200(r) = 4πr2ψ2
200(r)dr = 4πr2

[(
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]2
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1
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Clearly, a node appears in the distribution at r = 2aB. So, the 2s orbital has one node, in contrast to the 1s

orbital which contained none.2

2We’re clearly ignoring the case of the electron occurring at r = 0, as this corresponds to the situation where the electron is
bound directly to the nucleus and therefore has a position and momentum which are exactly known (those being at r = 0 and
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Importantly, the unchanged probability distribution and the radial distribution will take a different form

when we remove spherical symmetry from the equation, i.e., ` > 0.

17.3 Orbital Angular Momentum and Magnetic Moment

Bohr’s planetary model of the atom assumed that angular momentum is quantized such that L = n} for a

magnitude of the angular momentum L. The wave-mechanical solutions described so far have been achieved

without considering angular momentum. As we’ll see, the wave-mechanical solutions to electron orbitals which

posses angular momentum do in fact differ from Bohr’s predictions.

Recall that Bohr’s model of the atom afforded a single quantum number to describe the energy of a

quantum mechanical particle. In contrast, wave mechanics yields three quantum numbers to describe the

energy of a quantum mechanical particle: the principle quantum number n, the azimuthal quantum number `

(from which we can determine the magnitude of the orbital angular momentum), and the magnetic quantum

number m` (which tells us the z component of the angular momentum), whose values are limited by l. Notice

that the wave-mechanical description of a quantum mechanical particle permits ` = 0, i.e., a particle having

no angular momentum, something that the Bohr model forbids. As we’ve seen, the operators for the orbital

angular momentum are L̂2, L̂x, L̂y, and L̂z. The first gives the square of the magnitude, and the next three

provide the components along the x, y, and z axes.

We care about angular momentum because an electron traveling with an angular momentum around

a nucleus is a microscopic version of an electric current within a loop, thereby producing a magnetic field

perpendicular to the plane of the loop and giving the electron a magnetic moment. The current in the “loop”

is given by classical physics,

I = − qev
2πr

(17.3.1)

where 2πr is the circumference of the loop, qe is the charge of an electron, and v is the velocity of the electron.

The corresponding magnetic moment vector is µ = IA for A which is the area of the loop enclosed by the

electron. Since we already know that the loop is a circle of radius r,

µ = IA = −qevr
2

(17.3.2)

If we multiply the top and bottom by the mass of an electron and recognize that mevr = pθ for a momentum

as a function of the polar angle θ, we have

~µ = − qe
2me

~pθ (17.3.3)

as the magnetic moment vector ~µ as a function of the angular momentum vector ~pθ. The strength of a dipole

is proportional to the magnitude of the vector ~µ:

|~µ| =
∣∣∣∣−

qe
2me

~pθ

∣∣∣∣ =
qe}
2me

√
`(`+ 1) = µB

√
`(`+ 1) (17.3.4)

The negative sign of Equation (17.3.3) causes the magnetic moment vector to point in the opposite

direction as the angular momentum vector, as a result of the charge of an electron. The quantity µB is the

Bohr magneton, and equals µB = 9.274× 10−24 J/T.

Since it is the orbital angular momentum ` which gives rise to a magnetic moment vector (all that stuff

we talked about above) we would expect that an electron in the 1s, 2s, 3s, etc. orbitals to be unaffected by the

presence of a magnetic field. However, experiment has shown the opposite to be true (recall the Stern Gerlach

experiment). These results illustrate that another source of a magnetic moment is present within an atom and

p = 0, respectively), going against the uncertainty principle.
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led to the postulate that electrons must spin about an axis in addition to orbiting a nucleus. Hence, we speak

of the electron spin magnetic moment, in contrast to the orbital angular momentum.

Similar to the orbital angular momentum, the spin angular momentum of an electron can have certain

quantized values, separated by a factor of }. Hence, we use a spin quantum number, s, analogous to the

azimuthal number `, to describe the spin angular momentum. The magnitude of the vector defined by s is

given by
√
s(s+ 1)}. Again, similar to `, we define a quantum number to describe the z component of the

spin angular momentum, denoted ms, in analogy to ml. The allowed values for ms range between ±s. To

round out the picture as a whole, we assume that there exist operators Ŝ2, Ŝx, Ŝy, and Ŝz for the spin angular

momentum that are analogous to L̂2, L̂x, L̂y, and L̂z for the orbital angular momentum.

For the case of a single-electron system, the situation is simple. Only two spin orientations are possible:

the electron can have a spin angular momentum pointing up the z axis or pointing down the z axis. The

values corresponding to these two situations are respectively ±1/2. This implies that there should be two state

functions corresponding to the two spin states of an electrons. Moreover, these should be eigenfunctions of Ŝz

and should have eigenvalues of ±}/2.

There are no analytical formulas for the eigenfunctions of Ŝz, so they are handled symbolically. The spin

functions corresponding to ms = 1/2 and ms = −1/2 are labelled by α and β respectively. We assume further

that these spins functions form an orthonormal bases such that

∫
α∗αdσ =

∫
β∗βdσ = 1 &

∫
α∗βdσ =

∫
β∗αdσ = 0

where σ is some arbitrary spin coordinate to ease integration.

17.4 Indistinguishability of Electrons

Unlike macroscopic objects which can be distinguished from one another, any two electrons within an atom

cannot necessarily be distinguished from one another. This fact must be taken into account with our formulation

of the wave function for an electron.

Suppose we have an n-electron system which we describe with the wave function ψ which is a function

of the spatial, angular, and spin variables of each of the n electrons. We know that that wave function itself

is not an observable, however, the square of the wave function ψ2 is proportional to the electron density about

the nucleus and therefore may be measured.

Now, consider the helium atom. The two electrons of He are indistinguishable and therefore no observable

property of the atom must change upon an exchange of the electrons. Therefore, if we label the electrons as 1

and 2, ψ2(1, 2) = ψ2(2, 1) which is satisfied by either of ψ(1, 2) = ψ(2, 1) or ψ(1, 2) = −ψ(2, 1). If the former is

true, the wave function is said to be symmetric, whereas if the latter is true the wave function is antisymmetric.

Functions which do not satisfy either of these properties are asymmetric and are not allowable wave functions

for a system.

Although both the symmetric and antisymmetric wave functions satisfy the indistinguishability require-

ment, Wolfgang Pauli showed that only an antisymmetric wave function is allowed for electrons,3 a result that

can be formulated as one of the postulates of quantum mechanics:

Wave functions describing a many-electron system must change sign (be antisymmetric) under the

exchange of any two electrons.

This postulate is also known as the Pauli exclusion principle, or just the Pauli principle. This postulate was

later extended by Pauli to all fermions (electrons are a type of fermion) in the spin-statistics theorem.

3More generally, fermions are classified as particles whose wave functions are antisymmetric under an exchange whereas bosons
are classified as particles whose wave functions are symmetric under exchange.
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Antisymmetric wave functions can be constructed with ease using a Slater determinant :

ψ(1, 2, 3, . . . , n) =
1√
n!

∣∣∣∣∣∣∣∣∣∣

φ1(1)α(1) φ1(1)β(1) . . . φm(1)β(1)

φ1(2)α(2) φ1(2)β(2) . . . φm(2)β(2)
...

...
...

φ1(n)α(n) φ1(n)β(n) . . . φm(n)β(n)

∣∣∣∣∣∣∣∣∣∣

(17.4.1)

Note that individual electrons are represented by rows in the Slater determinant. Above, the spin functions

α and β alternate going across columns, and m = n/2 is n is even and m = (n + 1)/2 otherwise. The factor

in front of the determinant takes care of normalization. In the preceding formula, the shorthand notation

φ1s(1)α(1) = ψnlml+1/2(r1, θ1, ϕ1, σ1) is used to save space.

The beauty of using determinants to formulate wave functions is the relationship between a singular

matrix and the physicality of the wave function. If a matrix is singular, its determinant is zero and the inverse

matrix cannot be calculated. An interesting fact about matrices is that they are singular whenever two rows

or columns of the matrix are linearly dependent, i.e., are the same up to a constant. So, in the case of a Slater

determinant, the expression will be zero if any two rows are linearly dependent, i.e., any two electrons can be

described by the same set of quantum numbers. By the Pauli principle, no two electrons are allowed to occupy

the same set of quantum numbers and therefore the wave function is disallowed. It all makes sense!

A corollary to this result, if not already obvious, is that any given electron orbital, whether it be s, p, d,

etc., can have at most 2 electrons. These electrons are distinguished by their spins.

Note that that set of orbitals with the same values of n and l comprise a subshell, and the set of orbitals

with the same value of n comprise a shell.

17.5 The Variational Method

A variational principle asserts that a problem can be solved using the calculus of variations. The variational

method is a way of approximating the lowest energy eigenstate, i.e., ground state, and some excited states of

a quantum mechanical system by minimizing the expectation of the total energy of the system. Earlier, we

saw that electron-electron correlation prohibited us from determining an analytical solution to the Schrödinger

equation for systems of more than one electron. So, the variational method allows us to find approximate

solutions to the wave functions for such systems and estimate the energies of certain atomic and molecular

orbitals.

Consider a system of ground state energy E0 with a wave function ψ0 which is known exactly. By the

postulates of quantum mechanics, the expectation of the ground state energy can be computed as

〈E0〉 =

∫
ψ∗0Ĥψ0dτ∫
ψ∗0Ĥψ0dτ

(17.5.1)

where the integration is over all real numbers. Although the total energy operator Ĥ can be formulated exactly,

the exact total energy E0 cannot be determined exactly. By the variational principle, no matter which wave

function Ψ we choose to approximate ψ0, the ground state energy will always be greater than that of reality.

Analytically, this implies that

〈E〉 =

∫
Ψ∗0ĤΨ0dτ∫
Ψ∗0ĤΨ0dτ

≥ 〈E0〉 (17.5.2)

17.5.1 The Hartree-Fock Self-Consistent Field Method

The variational method is frequently used in computational and quantum chemistry calculations. The sim-

plest of these computational methods is the Hartree-Fock self-consistent field method (HFSCF).
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Figure 17.5: An algorithm for computing the wave function of a system using HFSCF.
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QUANTUM STATES FOR

MANY-ELECTRON ATOMS

States for Many electron atoms

- Scientist

Having more than one electron in an atom raises the issue of indistinguishability of electrons, electron spin,

and the interaction between orbital and spin magnetic moments. Taking these issues into account leads to a

new set of quantum numbers for the states of many-electron atoms and the grouping of these states into levels

and terms.

It can be shown that the eigenvalues of a given operator are independent of time only if the operator

commutes with the hamiltonian operator. The quantum numbers for hydrogen are good quantum numbers

because the set of operators l̂2, l̂z, l̂z, ŝ
2 and ŝz commute with Ĥ. In contrast, the good quantum numbers for

hydrogen, namely, n, l, ml, and ms, do not adequately describe many-electron systems.

Good quantum numbers for many-electron systems are generated by forming vector sums of the orbital

and spin angular momenta, where the summation is over the electrons in unfilled subshells.

18.1 The Helium Atom

18.2 Electron Spin
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